10 ANALYTICAL MECHANICS: CANONICAL
FORMALISM

10.1  Symplectic structure of the Hamiltonian phase space

Consider the real 2/ x 2] matrix
0 -1 ' _
J= ( 1 o ) (10.1)
(with 1 and 0 we henceforth denote the identity and the null matrix, with

the obvious dimensions, e.g. I x [ in (10.1)). Note that J is orthogonal and
skew-symmetric, i.c.” "

g l=9"= 3 (10.2)

and that J% = —1. As observed in Chapter 8, sctting x = (p,q), the Hamilton
equations can be written in the form

% = IV, H(x,t). (10.3)

FErample 10.1

Let § be a real symmetric constant 21 x 2] matrix. A linear Haomiltonian system
with constant coefficients is a system of 2/ ordinary differential equations of the
form (10.3), where

H(x) = %XTSX. (10.4)

The Hamiltonian is then a quadratic form in x and (10.3) takes the form
x =J5x%.

The solution of this system of differential equations with the initial condition
x(0) = X is given by '

x(t) = e'BX, (10.5)
where we set
B =95

The matrices with this structure deserve special attention. =
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DeFINITION 10.1 A real 21 x 2l matriz B is called Hamiltonian (or infinitesimally
symplectic) if

B3 L 98—A0. (10.6)
(]

TreorREM 10.1  The following conditions are equivalent:

(1) the matriz B is Hamiltonian; .
(2) B=1S, with S a symmetric matriz;
(3) IB is a symmetric matriz.

In addition, if B and C are two Hamiltonian matrices, B, BB (with # € R),
B4+ C and |B,C| = BC — CB are Hamiltonian matrices.

Proof o
From the definition of a Hamiltonian matrix it follows that

1B = —BT9 = (IB)",

and hence (1) and (3) are equivalent. The equivalence of (2) and (3) is immediate,
as S = -1B. . ‘

The first three statements of the sccond part of the theorem are o-bv1ous (f011
the first, note that BY = —8§7 =35, with 5’ = JSJ symmetric). Setting B =I5
and C = IR (with S and R symmetric matrices) we have

[B,C] = J(STR — RIS)

and

(SIR — RIS)' = —RIS + SIR.
Tt follows that the matrix [B,C] is Hamiltonian. =
Remark 10.1

Writing B as a 2 x 2] block matrix

a b
B_(C d)’

where a, b, ¢, d are [ x [ matrices, (10.6) becomes

et gt —id
B3 +IB = <a.+cﬂ" b— o7 )

and hence B is Hamiltonian if and only if b and ¢ are symmetric matrices and
a’ +d=0.If | =1, B is Hamiltonian if and only if it has null trace. m

Remark 10.2 - ‘ .
From Theorem 10.1 it follows that the Hamiltonian matrices form a group (with
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respect to matrix sum) called sp(l, R). If we identify the vector space of real 2/ x 2]
matrices with R‘”Z, the Hamiltonian matrices form a linear subspace, of dimension
(20 +1) (indeed, from what was previously discussed we may choose (I 4 1)/2
clements of the matrices b and ¢ and, for example, I2 elements of the matrix a).
In addition, since the Lie product (or commautator) [ , | preserves the group of
Hamiltonian matrices, sp(l, R) has a Lie algebra structure (sce Arnol'd 1978a). m

DerFmNITION 10.2 A real 21 x 20 matriz A is called symplectic if

ATIA=1. (10.7)
u

THEOREM 10.2  Symplectic 21 x 21 matrices form a group under matriz mul-

tiplication, denoted by Sp(l,R). The transpose of a symplectic matriz is
symplectic.

Proof

Evidently the 2/ x 2] identity matrix is symplectic, and if A satisfies (10.7) then
it is necessarily non-singular, since from (10.7) it follows that

(det(A))* = 1. (10.8)
In addition, it can be easily seen that
ATl = _JATg, (10.9)
so that
(A™)TIA™ = (AT)19(~JATT) = (AT) 1 ATT = 3,

ie. A7! is symplectic. If C is another symplectic matrix, we immediately
have that

(AC)TIAC = CTATIAC = CTIC = 1.
In addition, AY = —JA~19, from which it follows that
AJAT = AATY T =1, =

Example 10.2

The group of symplectic 2 x 2 matrices with real coefficients, Sp(1,R), coincides
with the group SL(2,R) of matrices with determinant 1. Indeed, if

a g
Ag('r 5)’

the symplecticity condition becomes

i - 0 ﬁacﬁ'—i—’@f}t B
AM_(ﬂwaa 0 )‘3-
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Hence A is symplectic if and only if det(A) = ad — By = 1. It follows that
every symplectic 2 x 2 matrix defines a linear transformation preserving area and
orientation. The orthogonal unit matrices (with determinant equal to 1) are a
subgroup of SL(2,R), and hence also of Sp(1,R). =

Remark 10.3
Let A be a symplectic 21 x 20 matrix. We write it as an { x [ block matrix:

A= (‘; 3) (10.10)

The condition that the matrix is symplectic then becomes

i T 7t iy
ras  [—0lc+c’a —ad+cb) _ (0 -1 :
A= (—b’l‘c+ o —bTd+d%)=\1 0 ) (10.11)

and hence A is symplectic only if a”c and b"d are [ x [ symmetric matrices
and aTd —cTb = 1. The symplecticity condition is therefore more restrictive in
dimension [ > 1 than in dimension { = 1, when it becomes simply det(A) = 1. It
is not difficult to prove (see Problem 1) that symplectic matrices have determinant
equal to 1 for every | (we have already seen that det(A) = +1, see (10.8)). =

Remark 10.4
Symplectic matrices have a particularly simple inverse: from (10.9) and (10.10)
it follows immediately that ’

14 T
gl (_&rc.r k! ) . (10.12)
m

Remark 10.5
If we identify the vector space of the 2[ x 2] matrices with R'Hz, the group Sp(l, R)
defines a regular submanifold of R*” of dimension /(24 1) (this can be verified
immediately in view of the conditions expressed in Remark 10.3; indeed, starting
from the dimension of the ambient space, 412, we subtract 2(I({ —1))/2, since
the matrices a’'c and 6Td must be symmetric, and /2 since a’d —c'b=1.) m

PROPOSITION 10.1  The tangent space to Sp(l, R) at 1 is the space of Hamiltonian
matrices:

T1Sp(, R) = sp(l, R). (10.13)
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Proof
Let A(t) be a curve in Sp(Il,R) passing through 1 when ¢ = 0, and hence such
that

ARTIA®R) =17 (10.14)

for every ¢t and A(0) = 1.
By differentiating (10.14) with respect to ¢ we find

ATTA+ ATTA =0,
from which, setting B = A(0) € TySp(l, R)
BT314+IB =0,

and hence B € sp(l,R). ]

Conversely, to every Hamiltonian matrix there corresponds a curve in Sp(l,R),
as shown in the following.

PropoSITION 10.2 Let B be a Hamiltonien matriz. The matriz A(t) = e'F is
symplectic for every t € R.

Proof
We must show that A(t) satisfies (10.7) for every t, i.e.

(etB)T:]etB —
It follows immediately from the definition
etB — Z L pn
n=0 1
that (e*5)T = e'B" | and (etB)~! = ¢~tB,
Hence the condition for the matrix to be symplectic becomes
B =1 tB,
But
tBY g T\l Ty Pyl
I= 2 = (BT B =2 = (BT (-98).
Iterating, we find
" 90 g,
@By =7) ¥ (_1yrpn — getB. o
n=0 ‘?’Ll

DEFINITION 10.3  The symplectic product on a real vector space V of dimension
20 is a skew-symmetric, non-degenerate bilinear form w : V x V. — R. The
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space V' endowed with a symplectic product has a symplectic structure and V is
a symplectic space. m

We recall that a bilinear skew-symmetric form is non-degenerate if and only
if w(vi,vg) = 0 for every vy € V implies v = 0. We note also that only
vector spaces of even dimension admit a symplectic structure. Indeed, all bilinear
skew-symmetric forms are necessarily degenerate in a space of odd dimension.

Consider the canonical basis er,...,eq in R?. The symplectic product w has
a matrix representation W obtained by setting

Wij = w(e@,ej).

Evidently the representative matrix W is skew-symmetric and the non-degencracy
condition is equivalent to det(W) # 0. Moreover, for every X, y € R? We have

21 :
wixy) = 2 Wiy, =x"Wy. (10.15)
ij=
By choosing the matrix W = J we obtain the so-called standard symplectic product
(henceforth simply referred to as symplectic product unless there is a possibility
of confusion) and correspondingly the standard symplectic structure.

Remark 10.6
The standard symplectic product has an interesting geometric characterisation.
Given two vectors x, y we have

XTJY = Y — e T Ty . 2oy
= (@ — myn) + - 4 (Bay — 2w,

corresponding to the sum of the (oriented) arcas of the projection of the par-
allelogram with sides x, y on the [ planes (ml,xH.,),...,(ﬂ:g,:f:zt). Hence, if p
is the vector constructed with the first [ components of x, and q is the one
constructed with the remaining components, we have x = (p,q), and analogously
if y = (p’,q’), we have

wx,y) =x"Jy = (@iph — p1d}) + ... + (qup] — myq)- (10.16)

Note that in R? the symplectic product of two vectors coincides with the unique
non-zero scalar component of their vector product. m

DEFINITION 10.4  Suppose we are given a symplectic product in R*. A symplectic
basis is a basis of R® with respect to which the symplectic product takes the
standard form (10.16), and hence it has as representative matriz the matriz 7. m

Given a symplectic product w, a symplectic basis R T
€p1see 1€y €gyy ..., €, satisfies
w(eqm eqj) = w(ei‘?n e;ﬂ_-,') == 07 (10[7)
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for every 4,5 =1,...,1 and
w(eg,ep, ) = 0. (10.18)

Remark 10.7
It follows that the choice of standard symplectic structure for RZ coincides
with the choice of the canonical basis of R? ag symplectic basis. m

Using a technique similar to the Gram—Schmidt orthonormalisation for the
basis in an inner product space, it is not difficult to prove the following theorem.

THEOREM 10.3 In any space endowed with a symplectic product it is possible to
construct a symplectic basis. 7]

As for inner product Spaces, it is possible to choose as the first vector of the
basis any non-zero vector.

Pursuing the analogy between an inner and a symplectic product, we can
define a class of transformations that preserve the symplectic product, taking as
a model the orthogonal transformations, which preserve the inner product.

DerINITION 105 Given two symplectic spaces Vi,w1 and Va,wa, a linear map
S : Vi — Va is symplectic if wz(S(v), S(w)) = wi(v,w) for every v, w € V. If
moreover S is an isomorphism, we say that S is a symplectic isomorphism. m

Remark 10.8

From Theorem 10.3 it follows, as an obvious corollary, that all symplectic spaces
of the same dimension are symplectically isomorphic. A ‘canonical’ isomorphism
can be obtained by choosing a symplectic basis in each space, and setting a
correspondence between the basis elements with the same index. In particular,
all symplectic spaces of dimension 2] are symplectically isomorphic to R with
its standard structure. -]

THEOREM 10.4  Let R* be considered with its standard structure, A linear map
S:R¥* R s symplectic if and only if its representative matriz is symplectic.

Proof

This is a simple check: given x,y € R% we have
w(8x,8y) = (5x)T1Sy = xTSTI8y,

which is equal to

2

wx,y) =x"Jy

for every x, y if and only if
5798 =1. u

We conclude this section with the definition and characterisation of Hamiltonian
vector fields (or symplectic gradient vector fields). These are useful in view of
the fact that the Hamilton equations can be written in the form (10.3).
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DEFINITION 10.6 A wector field X(x,t) in R is Hamiltonian if there exists a
function f(x,t) in ©? such that

X(x,t) = IVs f(x, ). (10.19)

In this case f is called the Hamiltonian corresponding to the field X and the
field X is called the symplectic gradient of f. If X is Hamiltonian, the system of
differential equations

% = X(x, 1) (10.20)

is called Hamiltonian. ]
The system of Example 10.1 is Hamiltonian.

Remark 10.9

A Hamiltonian vector field determines the corresponding Hamiltonian f up to
an arbitrary function h(t) depending only on time ¢. This arbitrariness can
be removed by requiring that the Hamiltonian associated with the field X = 0
be zero. =

Remark 10.10

In R? the vector w = Jv can be obtained by rotating v by /2 in the positive
direction. It is easy to check that, in R?, Jv is normal to v. It follows that
in a Hamiltonian field, for every fixed ¢, the Hamiltonian is constant along the
lines of the field (Fig. 10.1). Tf the field is independent of time the Hamilto-
nian is constant along its integral curves, i.c. along the Hamiltonian flow (recall
equation (8.26)). B

Tt is essential to characterise Hamiltonian vector fields. This is our next aim.

TuEorEM 10.5 A necessary and sufficient condition for a vector field X(x,1) in
R2 to be Hamiltonian is that the Jacobian maltriz V<X (x,t) is Hamiltonian for
every (X,1).

Proof
The condition is necessary. Indeed, if f is the Hamiltonian corresponding to X
we have that

1
0X; 0?
7 = E ik% )
Oz k=1 Oxp d.’f;j

and hence the matrix VX can be written as the product of the matrix J and
the Hessian matrix of f, which is evidently symmetric.

The condition is also sufficient: if VyX(x,t) is Hamiltonian for every (x,t),
setting Y (x,t) = JX(x,1), by (3) of Theorem 10.1, we have that

oy _ov,
ox; Oz
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[(x, H)=constant
t=constant

Fig. 10.1

Consequently, there exists a function f(x,t) such that

Y(x, t) = =V f(x,1).

From this it follows that

X(x,t) = —IY (x,t) = IV f(x,1). =

Ezrample 10.3
Consider the system of differential equations

o +1 5 5
P=—p""g, §=p*,

and compute for which values of the real constants a, # and 4§ this is a

Hamiltonian system. Find the corresponding Hamiltonian H (g, p).

‘ Considrer the jsecond equation; if there exists a Hamiltonian H(p,q) such that
¢ = 0H/dp, by integrating with respect to p we find:

(a) H=¢"logp+ f(q) if o = —1;
(b) H=p""¢"/(a+1)+g(q) if a 1.

- By s}ubstitutin'g in the equation p = —9H /dq and comparing with the equation
given for p, we find that, if & = —1, necessarily =0 and

/! P wipe
(E:,) H =logp+{¢°tL/(s + 1) +c} if § # —1, where ¢ is an arbitrary constant;
(") H=logp+logg+ecif § = —1, where ¢ is an arbitrary constant.
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If on the other hand a # —1 we find H = {(g)*"' /(e +1)} +¢ where as
usual ¢ is an arbitrary integration constant. -]

10.2 Canonical and completely canonical transformations

A method which can sometimes be applied to infegrate differential equat_ious is
to use an appropriate change of variables which makes it posvsible to vxfnte the
equation in a form such that the solution (or some property of the sglutum) cgn
be immediately obtained. The study ot particular classes of coordu_late trans-
formations in the phase space for the Hamilton equations is of great importance
and will be carried out in this and the next sections. In Chapters 11 and 12 we
will show how, through these transformations, it is possible to solve (exactly or
approximately) the Hamilton equations for a 1‘r1..1'g8 class of systems.
Given a system of ordinary differential equations

% = v(x,1), | (10.21)

where x € R" (or a differentiable manifold of dimension n), consider an invertible
coordinate transformation (possibly depending on time t)

x:=%(¥it); (10.22)

with inverse
y =y(x,t). (10.23)

If the function y(x,?) has continuous first derivatives, the system (10.21) is
transformed into

y=w(y,t) (10.24)

where

Oy

w(y,t) =Jv+ B

J is the Jacobian matrix of the transformation, Jix = Oy, [0z, and thg 1'ig‘}‘1t—
hand side is expressed in terms of the variables (y,t) using (10.22). Likewise
we consider the system of canonical equations with Hamiltonian H (x,t), where
XK= (pa q) € Rﬂu

x = IV, H(x,t), (10.25)
and make the coordinate transformation

% =%(Xt), (10.26)
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with X = (P, Q) € R%, subject to the invertibility condition
X = X(x,1), (10.27)

and to the condition of continuity of the first derivatives. Then the system of

canonical equations (10.25) is transformed into a new system of 2I differential
equations

X = W(X,t), (10.28)
where

X
W(X,t) = JIV<H + é—t, (10.29)
J is the Jacobian matrix of the transformation, with components Jix = 8X;/8zk,
and the right-hand side is expressed in terms of the variables X = (P, Q). In
general, the system (10.28) does not have the canonical structure (10.25), as it
is not necessarily true that a Hamiltonian K (X,t) exists such that

W = IJVx K. (10.30)

Ezample 10.4

We go back to Example 10.1 with H(x) = 1x7 Sx, where S is a constant symmet-
ric matrix. Let us consider how the Hamilton equation x = JSx is transformed
when passing to the new variables X = Ax, with A a constant invertible matrix.
We immediately find that X = AJSA—'X and in order to preserve the canonical
structure we must have AJSA™! = JC, with C symmetric. It is important to
note that this must happen for every symmetric matriz S, and hence this is a
germine restriction on the class to which A must belong. We can rewrite this
condition as ATJAJS = —ATCA. Tt follows that the existence of a symmetric
matrix C is equivalent to the symmetry condition

ATIAIS = STIATIA, (10.31)

ie. ATIS + SIA =0 with A = ATJA = — AT, for every symmetric matrix
S. If A is symplectic then A = T and the condition is satisfied. The same is
true if A = aJ (with a # 0 so that A is invertible). These conditions are also

necessary. Indeed, using the [ x | block decomposition we have A = (i\bT 't: )

and § = ﬁ% g), with the conditions A\ = -\, v = —v, o = @, 4T = 4.
The equation AJS = STA leads to the system
ABT + pa = ap™ + B,
Ay + uf = —av + By,
w8+ va = AT 4+,
ply+vf=—pTv+.
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Considering the particular case a = v = 0 we find that p must commute with
every [ x [ matrix, and therefore p = al. Choosing « =2 I} :.O- we find A :10 From
=~ =0 it follows that = 0. Hence A = aJ, and in addition, fro?lTA Uﬁ =al
it follows that JAJ = —a(A~")". We finally find that C' = a(A) SA~! and
the new Hamiltonian is K(X) = 1XTCX. If A is symplectic it holds that
K(X) = H(x), and if a # 1 we find K(X) = aH(x). m

The necessity to preserve the canonical structure of the Hamilton equations,
which has very many important consequences (see the following sections and
Chapter 11), justifies the following definition.

DEFINTTION 10.7 A coordinate transformation X = X(x,t) which is diﬁe'r‘enttmbie
and invertible (for every fized t) preserves the canonical structure gf Hamﬂt.on
equations if for any Hamiltonian H(x, L) there exists o corresponding func#zon
K(X,t), the new Hamiltonian, such that the systcm of transformed equations
(10.28) coincides with the system of Hamilton equations (10.30) for K:

pi:_aK(Q,P,t), e
9Q (10.32)
(Qi_()K((;Q,P,ﬂ1 £ = Lypenagls

8P,

Remark 10.11 . ' o
The new Hamiltonian K(Q,P,t) is not necessarily obtained by substmut}ng
into I(q,p,*) the transformation (10.26). This is illustrated in the following
examples. -

Erample 10.5 . .
The translations of R?* preserve the canomical structure of Lhe };Iamllt_()lrl
cquations. The rotations X = Rx, where R is an orthogon-C?,I matrix Y = R™,
preserve the structure if and only if R is a symplectic matl"lx (se.e Theorem 10.6
below). This is always true for [ =1, if R preserves the orientation of the plane
(sec Example 10.2), and hence if det(R) = 1. o

Fzample 10.6
The transformations

Po=uwp, t=1,...,1,

(10.33)

Qi:n('l"iq{) iil)"')L
where ft1,...,p and vy,. .., are 2l real arbitrary non-zero constants satistying
the condition piv; = A for every i = 1,...,1, are called scale transformations and

preserve the canonical structure of the Hamilton equations. Indeed, it can be
verified that the new Hamiltonian K is related to the old one H through

K(P,Q,t) = NH (17 'Pryeoo vy Pty ' Quycoy iy Qust).
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Note that K is the transform of H only in the case that iy =1, 0=1,...,1,
and hence if A = 1 (in this case the Jacobian matrix of the transformation is
symplectic). When X # 1 we say that the scale transformation is not natural,
Note that the Jacobian determinant of (10.33) is X!, and hence the transformation
(10.33) preserves the measure if and only if A = 1. The scale transformations are
commonly used to change to dimensionless coordinates. ]

Erxample 10.7
Let a(t) be a differentiable non-zero function. The transformation
Q-a(a, P=—
= . = —
q af t)p

preserves the canonical structure of the Hamilton equations. Indeed, the Hamilton
equations become

1 alt)

alt) " T 2@
Q = a(t)VpH +a(t),

corresponding to the Hamilton equations for the function

K(P,Q,)=H (a(t)P, %,,) L 2—%1’ Q. ]

Ezample 10.8

The transformation exchanging (up to sign) the coordinates ¢; with the corres-

ponding kinetic moments p; preserves the canonical structure of the Hamilton
equations

P=-q Q=p. (10.34)

The new Hamiltonian is related to the old Hamiltonian through
K(P,Q,t) = H(Q,-P,1).

This transformation shows how, within the Hamiltonian formalism, there is no
essential difference between the role of the coordinates q and of the conjugate

momenta p. -]

Ezample 10.9
The point transformations preserve the canonical structure of the Hamilton

equations. Indeed, let
Q=Q(q) (10.35)

be an invertible Lagrangian coordinate transformation. The generalised velocities

are transformed linearly:

Qi

Qi = a4,

(@)g; = Jiz(a)ds,
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where i = 1,...,] and we have adopted the convention of summation over repeated
indices. Here J(q) = (J;;(q)) is the Jacobian matrix of the transformation (10.35).
If L(q,q,t) is the Lagrangian of the system, we denote by

L(Q, Q. t) = L(a(Q), /7' (a(Q))Q, 1)

the Lagrangian expressed through the new coordinates, and by P the corres-
ponding kinetic momentum, whose components are given by

oL _1 0L _q
! a0 7 aqj wH

for ¢ = 1,...,1. The transformation (10.35) induces a transformation of the
conjugate kinetic momenta:

P = (J")p, (10.36)
and Hamilton’s equations associated with the Hamiltonian H(p,q,t) become

VOH 9t el

b= gt Oy S g, PH
I gy Fa Q) * Opn (10.37)
I
t Y aopy

where i =1,...,1L

Point transformations necessarily preserve the canonical structure. For the
Hamiltonian systems originating from a Lagrangian, the proof is easy. Indeed,
starting from the new Lapgrangian L(Q,Q,%) we can construct the Legendre
transform H (P,Q,1) to take the role of the Hamiltonian in the equations thus
obtained. It is easy to check that H is the transform of H:

AP, Q,t) = H(/M(a(Q))P,a(Q),1).
Indeed, to obtain the Legendre transform (8.19) of L(Q, Q,t) we must compute
H(P,Q,t) =PTQ - L(Q,Q,1),

and reintroducing the variables (p,q) we note that L goes to L, while PTQ =
plJ'Jq = ptq. Tt follows that H(P,Q,t) = H(p,q, t). We leave it to the

reader to verify that (10.37) are the Hamilton equations associated with H. =

DErFINITION 10.8 A differentiable and inwertible coordinate transformation X =
X(x,t) (for every fived t) is called canonical if the Jacobian matriz

J(x,t) = VxX(x,1)
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is symplectic for every choice of (x,t) in the domain of definition of the transform-
ation. A time-independent canonical transformation X = X(x) is called completely
canonical. =

We systematically assume in what follows that the matrix J is sufficiently
regular (at least C'). All arguments are local (i.e. are valid in an open connected
subset of R?).

Ezample 10.10

It can immediately be verified that the transformation considered in Example 10.7
is canonical, and those considered in Examples 10.22, 10.25 and 10.26 are com-
pletely canonical. The scale transformations (Example 10.5) are not canonical,
except when A = 1. =

Remark 10.12

Recall that symplectic matrices form a group under matrix multiplication. Then
we immediately deduce that the canonical transformations form a group. The com-
pletely canonical transformations form a subgroup, usually denoted by SDiff (R24),
We also note that det J =1, and hence canonical transformations preserve the
Lebesgue measure in phase space. m

THEOREM 10.6 The canonical transformations preserve the canonical structure
of the Hamilton equations. H

Before proving Theorem 10.6 it is convenient to digress and introduce a short
lemma frequently used in the remainder of this chapter. We define first of all
a class of 2/ x 2] matrices that generalises the class of symplectic matrices, by
replacing the equation J7JJ =17 by

JT1T = ad, (10.38)

where a is a constant different from zero. It is immediately verified that these
matrices have as inverse J ! = —(1/a)JJ"J. This inverse belongs to the analogous
class with o' instead of a. Therefore J” = —aJJ 17 and we can verify that
J¥ belongs to the same class of J , Le. JIJT = aJ. Obviously the class (10.38)
includes as a special case (for @ = 1) the symplectic matrices. An important
property of the time-dependent matrices that satisfy the property (10.38) (with
a constant) is the following.

LEMMA 10.1 If J(X,t) is a matriz in the class (10.38) then the matriz B =
(8J/0t)J ! is Hamiltonian.

Proof
Recalling Theorem 10.1, it is sufficient to prove that the matrix

A= J%J‘l (10.39)
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is symmetric. Differentiating with respect to ¢ the two sides of (10.38) we obtain

aJT O _
97+ 7597 _ . 10.40
=+ ( )

Multiplying this on the left by (J=!)T and on the right by J—! then yields

T
T-_._aj j:jg!]g] :A L

P i
A== ot

We now turn to Theorem 10.6.

Proof of Theorem 10.6
Let X = X(x,%) be a canonical transformation.
By differentiating X with respect to t and using x = IV, H (x,t) we find

%= 2% + JIV H. (10.41)
at
Setting
H(X,t) = H(x(X,1),1), (10.42)
we have that
V. H = J"VxH, (10.43)

from which it follows that equation (10.41) can be written as

X = %_}f +JIIJTVxH. (10.44)

But J is by hypothesis symplectic, and therefore we arrive at the equation

) X 4
X = i +IVxH, (10.45)
at
which stresses the fact that the field IVx H is Hamiltonian. .
To complete the proof we must show that dX /ot is also a Hamiltonian
vector field. By Theorem 10.5, a necessary and sufficient condition is that
B = Vx((9X(x(X,t),t))/0t) is Hamiltonian.
We see immediately that
o 09X, _ 3~ X, Om,

By = 0X; 0t  n=10tdx, 0X;’

and hence

B= %J‘l. (10.46)

Now Lemma 10.1 ends the proof. L
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Remark 10.13
The new Hamiltonian K corresponding to the old Hamiltonian H is given by

K = H+ K, (10.47)

where H is the old Hamiltonian expressed through the new variables (see
(10.42)) and Kp is the Hamiltonian of the Hamiltonian vector field 9X/dt,
and hence satistying

E{— = IVxKp. (10.48)

ot
It follows that Ky depends only on the transformation X(x,t) and it is uniquely
determined by it, up to an arbitrary function h(t) which we always assume to be
identically zero (see Remark 10.9). Here K can be identified with the Hamiltonian
corresponding to H =.0. If the transformation is completely canonical we have
that Ky =0, and the new Hamiltonian is simply obtained by expressing the old
Hamiltonian in terms of the new coordinates (consistent with the interpretation
of the Hamiltonian as the total mechanical energy of the system). =

We then have the following.

COROLLARY 10.1 For g completely canonical transformation the new Hamilto-
nian is simply the lransformation of the original Hamiltonian. A time-dependent
canonical transformation X = X(x,t) is necessarily a Hamiltonian flow, governed
by the equation X /0t = IVx K, (X, 1). §

We shall see that to every Hamiltonian flow X — S'x we can associate a
canonical transformation. Hence we can identify the class of time-dependent
canonical transformations with the class of Hamiltonjan flows.

Example 10.11
Consider the time-dependent transformation

1
p=P—at, ¢g=Q+Pt— §a,t2, (10.49)

where a is a fixed constant. We can immediately check that the transformation
is canonical, with inverse given by

I
P=p+at, Q:q—pt&ﬁatz.

The Hamiltonian Ky is the solution of (see (10.48))

P 0Ky 90 8K,
—_— = = —— -_ = - — = —~P = —
a8 "T e T P d ap
from which it follows that
PZ
Ko(PQ) = -5 - a0, (10.50)
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and the new Hamiltonian K(P,Q,t) corresponding to H (p,q,1) is:

.. P2
K('P’Q’t) ‘H(P—ﬁ‘.t.‘Q—f—Pt— %a‘tzrt) +KU(P=Q) :H(P;Q:t)f 7 7@@

The next theorem includes Theorem 10.6, and characterises the whole class of
transformations which preserve the canonical structure of the Hamilton equations.
Moreover, it characterises how these transformations act on the Hamiltonian.

TuporeM 10.7 A necessary and sufficient condition for a differentiable and
invertible (for every fived t ) coordinate transformation X = X(x,t) to preserve
the canonical structure of the Hamilton equations is that its Jacobian matriz
belongs to the class (10.38), i.c.

TP =100 =uf (10.51)

for some constant a different from zero. The transformation acts on the
Hamiltonian as follows:

K(X,t) = aH(X,t) + Ko(X, 1), (10.52)

where H(X,t) = H (x(X,t),t) is the transform of the original Hamiltonian ond
Ky (corresponding to IT = 0 ) is the Hamiltonian of the vector field AX/dt. The
transformation is canonical if and only if a = 1. [

COROLLARY 10.2 The canonical transformations are the only ones leading to a
new Hamiltonion of the form K = H + Ko, and the completely canonical ones
are the only ones for which K = H. u

In addition, note that when a # 1 the transformation can be made into a
canonical transformation by composing it with an appropriate scale change.

The proof of Theorem 10.7 makes use of a lemma. We present the proof of
this lemma as given in Benettin ef al. (1991).

LemMA 10.2 Let A(x,t) be a regular function of (x,t) € RZ+! with values in
the space of real non-singular 21 x 21 matrices. If for any reqular function H(x,t),
the vector field ANV H is irrotational, then there exists a function o : R — R
such that A= a(t)1.

Proof
If AVxH is irrotational, for every 4, j =1,...,2l, we have that
a a
e i = —(AV,H),. 10.53

Let H = z;. Then

d 16, ;

A = e 10.54

B 5t = s s (10.54)
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(note that we are not using the convention of summation over repeated indices!),
while if we let H = 22 then

%(Ajixi) = %(Aum) (10.55)
It follows using (10.54) that,
Aji = Ayudy,
i.e. the matrix A is diagonal. From (10.54) it also follows that

Ay - o oy
E_O, lfj%l’u

and therefore A has the form
Aij(x, 1) = ag(z4,£)d,5,

for suitable functions a;. Using (10.53) we find that

a P a ———82H for j =4
P rjti
Y0ri0z; ~ Omdm; S ITH

from which it follows that a; = a; = a(t). El

Proof of Theorem 10.7
Suppose that the transformation preserves the canonical structure, so that

X = IV K(X,1). (10.56)

Comparing (10.56) with the general form (10.44) of the transformed equation

; IX .
Kisar o+ JIJTx H (10.57)
we deduce
X .
ar = IVxK — JIT"VxH. (10.58)

We also know (by hypothesis) that to H = 0 there corresponds a Hamiltonian
Ky, for which (10.58) becomes

X

T IVxKp. (10.59)

By substituting (10.59) into (10.58) and multiplying by J we find

Vx(K — Kp) = —1J9J"Vx H. (10.60)
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Hence the matrix —J.79J7 satisfies the assumptions of Lemma 10.2 (because H
Is arbitrary). It follows that there exists a function a(t) such that

—3J3J" = a(t)1. (10.61)

Equation (10.61) shows clearly that J satisfies equation (10.51), with a possibly
depending on time. To prove that a is constant we note that, since 90X/t is a
Hamiltonian vector field (see (10.59)), its Jacobian matrix

0X _aJ

B = T e
VX T = b

is Hamiltonian (see Theorem 10.5 and equation (10.46)). Thercfore we can write
(Definition 10.1)

0J Yoo —
((atj_l) J—l-ﬂEJ*i:O. (10.62)

This is equivalent to the statement that (8/0t)(JT1J) = 0, yielding a = constant.
Now from (10.57) and (10.59), we can deduce the expression (10.52) for the new
Hamiltonian K,

Conversely, suppose that the matrix J satisfies the condition (10.51). Then
(Lemma 10.1) (0.7/8t)J 1 —= Vx0X/0t is a Hamiltonian matrix. Therefore, the
field 9X /0t is Hamiltonian, and we can conclude that equation (10.57) takes the
form

X = ij(Ko -+ (Jﬁ)

It follows that the transformation preserves the canonical structure, and the new
Hamiltonian K is given by (10.52). u

For the case [ =1, Theorem 10.7 has the following simple interpretation.

COROLLARY 10.3 For | =1 the condition of Theorem 10.7 reduces to

det J = constant # 0. (10.63)

Proof
It is enough to note that for { =1 we have J79J = Tdet J. 5]

Frample 10.12
The transformation

p=avPcosyQ, q=pVPsinyQ, afy £ 0,

with «, 8,7 constants, satisfies condition (10.63), since det J = safy. It is
(completely) canonical if and only if %a,@’y =1. |
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It is useful to close this section with a remark on the transformations which are
inverses of those preserving the canonical structure. These inverse transformations
clearly have the same property. If X = X(x,t) is a transformation in the class
(10.51), its inverse x = x(X, ¢) has Jacobian matrix J—! = —(1/a)3JT3, such that
(J=Y)TJ9J1 = (1/a)7 (as we have already remarked). The inverse transformation
reverts the Hamiltonian (10.52) to the original Hamiltonian H. For the case of
the inverse transformation, the same relation (10.52) is then applied as follows:

H(x,t) = K}(x, 1) + % [f((,(x,t)# aH (x, t)] , (10.64)

where Kp(x,t) denotes the transform of Ko(X, 1), and Kj(x,¢) is the Hamiltonian
of the inverse flow dx/0t. Equation (10.64) shows that K} and Ky are related by

1 s
Hence in the special case of the canonical transformations (a = 1) we have
alxt) = ~Ka{x; 1) (10.66)

This fact can easily be interpreted as follows. To produce a motion that
is retrograde with respect to the flow 0X /0t = IVxKy(X,t) there are two
possibilities:

(a) reverse the orientation of time (¢t — —t), keeping the Hamiltonian fixed;

(b) keep the time orientation, but change K into —Kj.

The condition (10.66) expresses the second possibility.
Lrample 10.13

The transformation

a

g

with «,3,w,a non-zero constants, preserves the canonical structure of the
Hamilton equations (check that det J — a). It is canonical if and only if a = 1.
In this case, it is the composition of a rotation with a ‘natural’ change of scale.
The inverse of (10.67) is given by

P =apcoswt + fgsinwt, Q= ——psinwt + Er;g COS Wt, (10.67)
«

1
p=

B o 1.
= —Pcoswt — — t, = swit + =P t. 10.68
o b cosw aQsmw q anos +,6' sinw ( )

By differentiating (10.67) with respect to time, and inserting (10.68) we find
the equations for the Hamiltonian flow X = X(x,t):

(’)P_aﬁwQ, 0Q  aw

T 5P (10.69)
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with which we associate the Hamiltonian

E%Qz 2 lawPZ

Ko =— — P2,
2 a 2a8

(10.70)

Performing the corresponding manipulations for the inverse transformation (10.68)
we find the equations for the retrograde flow:

dp _ Pw dg  aw

T R e (0-71)
which is derived from the Hamiltonian
1 fw loaw .
K.’ —s T ) - b
B =gl 27 i (10.72)
Expressing Kg in the variables (p,q) we obtain
which is in agreement with equation (10.65). =

10.3 The Poincaré-Cartan integral invariant. The Lie condition

In this section we want to focus on the geometric interpretation of canonical
1 ansif(')rmatlens. In the process of doing this, we derive a necessary and sufficient
condition for a transformation to be canonical. This condition is very useful in
practice, as we shall see in the next section.

Let us start by recalling a few definitions and results concerning differential
forms.

DEFINITION 10.9 A differential form w in R+

2141
w= 2 wix) da, (10.74)

is non-singular if the (20 + 1) x (21 + 1) skew-symmetric matriz A(x), defined by

o= Do (10.75)
0z; Oz T

has mazimal rank 2(. The kernel of A(x), characterised by {v e R%#* | A(x)v = 0},
as X varies determines a field of directions in R+ called characteristic directions.
j;he wntegral curves of the field of characteristic directions are called characteristics
of w.

) ]
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Remark 10.14
For 1 =1, setting w = (w1, ws,ws) the matrix A(x) is simply

0  —(w)s (w)
Ax)=| (w)s 0 —(wh
—(w)2  (wh 0

and A(x)v = w(x) x v. Therefore the characteristics of the form w can be
indentified with those of the field w. o

Example 10.14
The form w = xp dz, + 3 dzg + z; dzs in R? is non-singular. The associated
characteristic direction is constant and is determined by the line 21 = 29 = z3. =

Ezample 10.15

The form w = z; dzs + %—(:r% + 22) dzs is non-singular. The associated field of
characteristic directions is (22, —21,1). m
Remark 10.15 ) ]

The reader familiar with the notion of a differential 2-form (see Appendix 4)
will recognise in the definition of the matrix A the representative matrix of the
2-form

2141 8
it
—dw = E zdmi/\dxj. 7]
i,j=1 0L

The following result can be easily deduced from Definition 10.9.

ProrosITION 10.3  Two non-singular forms differing by an exact form have the
same characteristics. =

Consider any regular closed curve -y. The characteristics of w passing through
the points of v define a surface in R¥*+! (i.e. a regular submanifold of dimension
2) called the tube of characteristics. The significance of non-singular differential
forms, and of the associated tubes of characteristics, is due to the following

property.

THEOREM 10.8 (Stokes’ lemma) Let w be a non-singular differential form, and
let v1 and o be any two homotopic closed curves belonging to the same tube of

characteristics. Then
f w:% wW. (10.76)
Y1 Yz

Equation (10.76) expresses the invariance of the circulation of the field X(x),
whose components are the w;, along the closed lines traced on a tube of
characteristics.

The previous theorem is a consequence of Stokes’ lemma, discussed in
Appendix 4. Note that this is natural generalisation of the Stokes formula,
well known from basic calculus (see Giusti 1989).
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We now consider a system with Hamiltonian H(p,q,t) and its ‘extended’
phase space, where together with the canonical coordinates we consider the time

t:{pya,t) £ BAH,

THEOREM 10.9 The differential form

!
o El p; dg; — H(p,q,t) dt (10.77)
e
in R2*L s mon-singular and it is called the Poincaré Cartan form. Its charac-
teristics are the integral curves of the system of Hamillon’s equations associated
with the Hamiltonian H.

Proof
The matrix associated with the form w is
0 -1 VpH
A(p,q,t) = 1 0 VgqH

_(VpH)T —(VaH)T 0

Evidently the rank of the matrix A is equal to 2/ for every (p,q,t) (note that
one of its 2[ x 2] submatrices coincides with the matrix J). It follows that the
form w is non-singular. Moreover, the vector

V(P: q, t) = (*VqHz Vpi, 1)

is in the kernel of A for every (p,q,t), and therefore it determines the
characteristics of w. The integral curves of v are the solutions of

p:*qu’
q:VpH:
=1,

and hence they are precisely the integral curves of Hamilton’s system of equations
for H, expressed in the extended phase space R+, m
The application of Stokes’ lemma to the Poincaré—Cartan form (10.77) has a

very important consequence.

TuroREM 10.10 (Integral invariant of Poincaré-Cartan) Let y1 and 72 be any
two homotopic closed curves in R+ belonging to the same tube of characteristics

relative to the form (10.77). Then

. I l
% (2 p; dg; — H(p,q,t) dt) :jtg (izlpg dg; — H(p, q,t) dt) . (10.78)
Y1 a 72 i
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Remark 10.16

Denote by 7o a closed curve belonging to the same tube of characteristics as Y,
lying in the plane t = #,, for fixed t;. Then the result of Theorem 10.10 yields
as a consequence the fact that

1 !
jg (22 pi dg; — H(p,q,t) dt) = yg .Z_lpi dg;.
¥ - oy B

We shall see how the integral (10.79) completely characterises the canonical
transformations, highlighting the relation with the geometry of the Hamiltonian
flow (i.e. of the tubes of characteristics of the Poincaré-Cartan form). Indeed,
starting from a system of Hamilton’s equations for a Hamiltonian H and going
to a new system of Hamilton’s equations for a new Hamiltonian K , the canonical
transformations map the tubes of characteristics of the Poincaré—Cartan form
(10.77) associated with H onto the tubes of characteristics of the corresponding
form associated -with K. m

(10.79)

We can state the following corollary to Theorem 10.12.

COROLLARY 10.4 A canonical transformation maps the tubes of characteristics
of the Poincaré-Cartan form (10.80) into the tubes of characteristics of the
corresponding form

1
Q=2 PdQ; - K(P,Q,1) dt. (10.80)

FEzxample 10.16
Consider the transformation of Example 10.12, which we rewrite as

p=avVPcosyQ, ¢=pVPsinyQ.

For afty = 2 this transformation is completely canonical, We compare the
Poincaré-Cartan forms written in the two coordinate systems:

w=pdg—H(p,qt) dt, Q=P dQ - H(P,Q,t) dt.
The difference is
w—Q=pdg— P dQ.

Expressing it in the variables P, we obtain
w—0N=d X P sin2v(¢)
= % sin2yQ ) .

Since w and Q differ by an exact differential, they have the same tubes of
characteristics. u
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We now want to show that the result discussed in the previous example
(w—8 = df) is entirely general and constitutes a necessary and sufficient condition
for a transformation to be canonical. We start by analysing the difference w —Q
when we ‘fix time’ (freezing the variable ¢).

Consider a differentiable, invertible transformation X = X(x,t) from the
coordinates x = (p,q) to X = (P, Q):

Pi :p’i(P‘;Q:t)) q; = %(P: Qat): (1081)
where ¢ = 1,...,[. Consider the differential form
t ~
=L p(P, Q1) da(P,Q,), (10.82)

where, given any regular function f(P,Q,t), we set

l

d O g2 (X of
— 5= = s P‘l " ) ) .
df =d a1 dt e (('ﬂji dF; + 20, d@ (10.83)

Here d is the so-called ‘virtual differential’ or ‘time frozen differential’ (see Levi-
Civita and Amaldi 1927).

TurorEM 10.11 (Lie condition) The transformation (10.81) is canonical if and
only if the difference between the differential forms & and Q s ezact, and hence
if there exists o regular function f(P,Q,t) such that

{
@~ = 2a(ps dg; — B dQs) = 7. (10.84)

Proof
Consider the difference

and write it as

29 = Z:il (pz- a(]i — &P»r:) = 1=il (Pi aQi - Eujz) =+ (Nléjl (piqi — FQi)

1
ij+d gjl{mqi — Q).
The form 7 can be rewritten as
f=XT73 dX —x"7 dx.
Recalling that dX = .J dx, we see that

= (X197 —x"9) dx = g" dx,
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with g = —JTIX + Jx. Therefore, the form 7 is exact if and only if dg; J Oy =
dg;/0z;. We now compute (using the convention of summation over repeated
indices)

dg; O ki
=N ——. — S i
(93;_:; 4 8$j JenXn — JkidienJng
dg.; ATk
9i S ijthh = kajk:h-jh.i)

% s 3561
and note that
8JM - asz - aJ,ch
Or;  Ox;0x; Oz’

and hence

dr;  Oz;

(I = JT9T)s5 — (3= TF9T) g = 23— I3y,

whcr9 J—JT1J is skew-symmetric. We can conclude that the form #, and thercfore
@ — §, is exact if and only if J is symplectic, or equivalently if and only if the
transformation is canonical. =

Remark 10.17
If the transformation is completely canonical, it is immediate to check that
in the expression (10.84) d =d, and f can be chosen to be independent of t. m

Ezxample 10.17
Using the Lie condition it is ecasy to prove that point transformations
(Example 10.9) are canonical. It follows from (10.35), (10.36) that

! !
2 (p; dgi — P, dQi) = 2opy dgs — 22 T i da
i=1 i=1 id k=1 7
I

p; dg; — E Pidik dgr = 0. -
1 Jk=1

M,..

i

Ezample 10.18
Using the Lie condition let us check that the transformation (sec Gallavotti 1986)

i = PP — Q1Q 4o — PyQo + PiQy
SR

P2 . 2

p1 = —Pi1Qo, P2 = 1_2493

is completely canonical. Setting

P =p1 +ips, Q=aq +iga,
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where i = +/—1, note that

B Py +1i0)

i . 2 e i
P—s(Pi+iQ2), Q=350

from which it follows that
_ 1
D1 dq1 +'p2 d(}"), = R(’{'J) d ) =2 P1 dQ] -+ P2 sz — 5d(P1QI + PQQQ);

hence the Lie condition is satisfied with f = —2(P1Q1 + P2Q2). a

Remark 10.18
We can see that the Lie condition (10.84) is equivalent to the statement that

there exists a regular function f(P,Q,t), defined up to an arbitrary function of
time, such that, for every i =1,...,1,

i 3
of ¥ dg;

—_— P t = q Pg )t - PJQit H
BPZ( ,Q> ) j:lpj( Q )dPL( ) (L085)
1

o A
O ©,Q,0 = X 5y(P, Q1)

P, Q)= P
A0Q; = 3@;( Q)

The Lie condition has as a corollary an interesting result that characterises
the canonical transformations through the Poincaré-Cartan integral invariant.

COROLLARY 10.5 The transformation (10.81) is canomnical if and om’y. if, ng
every closed curve yo in R made of simultaneous states (p,q,to), if To s
its image under the given transformation (in turn made of simultaneous states

(P,Q,t)), then
l L
fihmm—éLﬁd% (10.86)
g=1 Jr, =
Yo 0

Proof
From the definition of a fixed time differential, it follows that

1 A 1 3
?gzpidinjg @, jg ,ZPisz':¢ Q,
; i=1 To I'o =1 Jrg

where @ and Q are computed fixing t = tp. Note that on I'g we assume that w l‘i
expressed in the new variables. Therefore the condition is necessary. Inqee.d, if
the transformation is canonical, by the Lie condition the difference & — @ is an
exact form, whose integral along any closed path vanishes.

‘
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Evidently the condition is also sufficient. Indeed, if

ﬁo(w—ﬁ)o

along any closed path Ty then the form @ — Q is exact (see Giusti 1989,
Corollary 8.2.1). m

For [ =1 equation (10.86) is simply the area conservation property, which we
already know (in the form det J = 1) to be the characteristic condition for a
transformation to be canonical. )

We can now prove the important result, stated previously: the conservation
of the Poincaré-Cartan integral invariant is exclusively a property of canonical
transformations.

Tueorem 10.12  If the transformation (10.81) is canonical, denote by

"
Q= EP" dQ; — K(P,Q,t) dt (10.87)

the new Poincaré-Cartan form. Then there ezists a regular function F(P,Q,t)
such that

2 (p; dg; — P dQi) + (K — H) dt = w— @ = dF. (10.88)

=1

Hence the difference belween the two Poincaré-Cartan forms is evact. Conversely,
if (10.81) is a coordinate transformation such that there exist two functions
K(P,Q,t) and F(P,Q,t) which, for Q@ defined as in (10.87), satisfy (10.88), then
the transformation is canonical and K is the new Hamiltonian.

Proof
We prove that if the transformation is canonical, then condition (10.88) is satis-
fied. Consider any regular closed curve « in R?*1, and let T be its image under
the canonical transformation (10.81).

Since the transformation is canonical the tube of characteristics of w through
7 is mapped to the tube of characteristics of @ through I' (Corollary 10.74).
Therefore it is possible to apply Stokes’ lemma to write

1 L
j‘g(w“n): (w‘ﬂ):jg ,Epz'd%*jg _ZPz'sz':U,
r o 7o =1 I =1

where 7o,y are the intersections of the respective tubes of characteristics with
t =ty (Fig. 10.2). It follows that the integral of w — Q along any closed path in
R+ is zero, and therefore the form is exact.
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Fig. 10.2

We now prove the second part of the theorem. Since the difference w — 2 is
exact we have

) X I .
5{ >, dqr;é tp d@:f (—9)=0,
Yo =1 v Fu =1 Fu

and the transformation is canonical. Therefore the characteristic directions of
the form w coincide, after the transformation, with those of the form ¢ —
Zf;:l P; dQ; — K’ dt, where K’ is the new Hamiltonian. On the other hand, the
characteristic directions of w coincide with those of 2+ d7F, and hence of Q. In
addition ' —Q = (K’ — K) dt and the coincidence of characteristics implies that
K' — K may depend only on ¢. Hence, following our convention, K’ — K. =

FEzample 10.19
We consider again Example 10.11 in the light of the results of this section. By
equation (10.49), the Lie condition (10.84) can be written as

pdg— P dQ = (P — at)(dQ + ¢ dP) — P dQ = df(P, Q,1),

from which it follows that

P2
F(P,Q,1) =t—- — at®P —atQ + f1(),

where f; is an arbitrary function of time.
The condition (10.88) for the transformation (10.49), taking into account
(10.50), can be written as

2
(P—at)(dQ+ P dt +t dP — at dt) — P d@ + (];— - aQ) dt =dF(P,Q,1),

s

10.3 Analytical mechanics: canonical formalism 361

and after some simple manipulations we find
L8 2 I 5,3
EF(P,Q,t):EtP — at*P — atQ + 30t m

We conclude this section by proving that the Hamiltonian fow defines a
canonical transformation.

Let H(p,q,t) be a Hamiltonian function, and consider the associated
Hamiltonian flow x = S*X:

Di :Pi(P: Q: t)) qi = (I_i(Pr Q?t)) (1089)

where = 1,...,l. BEquations (10.89) are therefore the solutions of the system of
equations
5})2‘ - OH qu- oH

L. .. - 10.9
o ~ o ot op’ (£06:00)

with initial conditions p;(0) = B, gi(0) = Q;, i =1,...,1I. By the theorem of
existence, uniqueness and continuous dependence on the initial data for ordinary
differential equations (see Appendix 1) equation (10.89) defines a coordinate
transformation which is regular and invertible.

THEOREM 10.13  The Hamiltonian flow (10.89) is a time-dependent canonical
transformation, that at every time instant t maps X to S*X. In addition, the new
Hamiltonian associated with H in the variables X is K = 0.

Proof
We verify that the Lie condition (10.84) is satisfied, with
t l aq
ean-= [ L;pj(P,Q,v-)a—;(P,Q,r) ~ H(p(P,Q,7),q(P,Q,7),7) | dr.
(10.91)

By Remark 10.18, it is enough to show that for every 1t =1,...,1 we have

l

d e
51{;; ®.Q1 = ;E_lpj(P, Q,t)afj; (P,Q, 1),

a l B

aé: P.Q. :.7£pj(P’Q’t) aé‘: (P,Q,t) — P,

We prove the second relation. The first one can be shown in an analogous manner.
We have

[y
aQ-i_ p J=1

Op; 0¢; 0% OH p; OH Oy
0Q: ot "o,  op 0Q; g 90, | T
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but since (10.89) is the transformation generated by the Hamiltonian flow, it
follows from equations (10.90) that

1

of _ ('3[ 04 0% 09 Op; , Op; 04
a0 _/(; =1 10Q; Ot Py MoQ; at 9¢; ot 0Q;
¢ ad EE: (r)(}-','
fn 5t =1 7780;
1 ! .
5 dg; ) dg;
= 2 p, t) — 2 p;(P,Q,0) L (P,Q,0
= 2 0P, Q150 (B,Q1) — 2 ps(P,Q,0) 52 (P, Q,0)

l

dg; _ P,
1pj(P1Q:i‘) 0Q; (P) Qat) A Jge

-~

2

]
Jq; _ b,
= 2 p;(P, Q1) 50 (P, Q1) — P

By what we have just computed,

df :zzi:l (Pi dg; — P, sz’):

while from (10.83) it obviously follows that

l

1
5 E)f _ .~-— 7'” . Z,%—If dt

l
= 2 (p; dg; — Pr Q) — H dt.

Taking into account Theorem 10.6, it follows from this that the new Hamiltonian
associated with H is exactly K = 0. =

Remark 10.19 )
From the expression (10.91) for f, since p; = Ap; /Ot and ¢; = Og;/0t, we see
that f(P,Q,t) is the Hamiltonian action A(P,Q,t) (see (9.43)) computed by an
integration along the Hamiltonian flow (10.89), i.c. the natural motion. |

Recalling the result of Corollary 10.1, we can now state that thle canonical
transformations depending on time are all and exclusively the Hamiltonian ﬂows.. It
we apply the canonical transformation x = x(x*,t) generated by the Ham}ltonym
H(x,t), to a system with Hamiltonian H*(x*,1), we obtain 1.;he new ‘Har'rultoman
K*(x,t) = H*(x, t) + H(x,t) (here H plays the role of the function 1nd}Jcate(1 ‘by
K, in the previous section). Consider now the Hamiltonian flow x = StX with
Hamiltonian H(x,t). The inverse transformation, mapping StX in X .for every t,
corresponds to the retrograde motion (with Hamiltonian —H) and it is naturally
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canonical. For the canonical transformation x = S*X the variables X play the
role of constant canonical coordinates (X = 0). In agreement with this fact, we
note that the composition of the two flows yields the Hamiltonian K (X,t) = 0
and therefore precisely constant canonical coordinates. As an example, note that
the transformation (10.49) is the flow with Hamiltonian H = p%/2 + ag. This is
independent of time, and hence it is a constant of the motion, implying that
p?/2+aq = P?/2+aQ). This is the equation for the trajectories, travelled ‘forwards’
(P,Q) — (p,q) through the flow with Hamiltonian I (p,q), and ‘backwards’
(p,q) — (P,Q) with Hamiltonian (10.50), i.e. —H(P,Q). The superposition of
the two yields (P, Q) — (P,Q) for every ¢, and hence P =@ =0 (corresponding
to the null Hamiltonian). :

Remark 10.20
The apparent lack of symmetry between the condition

! A
E(Pi dg; — F; d@;) =43,

where J is independent of ¢, for a transformation to be completely canonical,
and the relation

i

24(ps dgi — P, dQy) + (K — H) dt = d5,

where J depends also on ¢, for a time-dependent transformation to be canonical,

can be eliminated by using a significant extension of the Hamiltonian formalism.
Indeed, given a non-autonomous Hamiltonian system H (p,q,t), we consider,

in addition to the canonical equations (10.90), the equations (see (8.26))

_dam_ om
e~ o’

b1, (10.92)

The system of equations (10.90), (10.92) corresponds to the canonical equations
for the Hamiltonian 3 : R¥+2 » R,

H(p,m,q,7) = H(p,q,7) +m, (10.93)

where

m=—H, T=t, (10.94)

and hence the Hamiltonian and time are considered as a new pair of canonically
conjugate variables. This is possible since Vo = Vo H, VqH = V H and

oo om oo
ar — ot T am
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By (10.94) we also have that H = 0, and the Poincaré-Cartan form (10.77)
becomes

! l I+1
Lp; dgs— H dt = 2o pi dgs+7 d7 = 2 p; da, (10.95)

where we sef piy =7, g1 =7.

The canonical transformations (10.81) are therefore always completely canon-
ical in R?*2, and they associate with the variables (p,7,q,7) new variables
(P,T1,Q,T), with the constraint T'= 7. The Hamiltonian JH is always zero.

Conversely, transformations such as

1

r=a(T), =n= o (T) 11 (10.96)

can be included in the canonical formalism, since

1
It = ——[d'(T) dT =1 dT.
mdr=— @ (T)
The effect of equation (10.96) is a re-parametrisation of time, and by using the
fact that it is canonical one can show that the canonical structure of Hamilton’s
equations is preserved, by appropriately rescaling the Hamiltonian H = —7. =

10.4 Generating functions

In the previous sections we completely described the class of canonical trans-
formations. We now study a procedure to generate all canonical transformations.
As we saw in the previous section, the Lie condition (10.84), or its equival-
ent formulation (10.88), is a necessary and sufficient condition for a coordinate
transformation to be canonical. In the form (10.88), it allows the introduction of
an efficient way to construct other canonical transformations.
Assume that

p=p(P,Q,t), a=aq(P,Q,1) (10.97)
defines a canonical transformation in an open domain of R, with inverse
P=P(p,q,t), Q=Q(p,q,i). (10.98)

A canonical transformation of the type (10.97) satisfying

A,
E = 10.99
det (ﬁPj) #iD ( )

is called free. Applying the implicit function theorem to the second of equations
(10.97), the condition (10.99) ensures that the variables P can be naturally
expressed as functions of the variables q, Q, as well as of time. Therefore, if

P =P(q,Q,1), (10.100)
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by substituting this relation into the first of equations (10.97) we find

p=p(q,Q,1). (10.101)
The condition (10.88)

l I
gm dgi — H dt — (EIP dQ; — K dt) —dF
can therefore be written
I
glﬁ@(q, Q,) dg; — H(q,p(q, Q,1),t) dt
1
- (221 Bi(q,Q,t) dQ; - K(P(q,Q,1),Q,1) dt) =dF(q,Q,t), (10.102)

where the variables (q,Q) are considered to be independent and F(q,Q,t) is
obtained from F(P, Q,t) through equation (10.100). From (10.102) it follows that

HF
P = =, 10.103
B Og; ( )
oF
P ==, 10.104
R .
I
K=H+ %?, (10.105)

where 1 =1,...,L
Equation (10.104) shows that the matrix — (9g;/0P;) is the inverse matrix of
(82F/(8¢:0Q;)). Therefore the condition (10.99) is clearly equivalent to requiring

that
det( i )7&0 (10.106)
"\ 0q;0Q; ' ’

We now follow the converse path, starting from the choice of a function of the
type (10.106).

DEFINITION 10.10 A function F(q,Q,t) satisfying condition (10.106) is called o
generating function (of the first kind, and it is often denoted by F = Fy) of the
canonical transformation defined implicitly by equations (10.103)-(10.105). m

Remark 10.21

Given the generating function F, equations (10.103)-(10.105) define the canon-
ical transformation implicitly. However the condition (10.106) ensures that the
variables Q can be expressed as functions of (q,p) and of time ¢, by invert-
ing equation (10.103). The expression of P as a function of (q,p) and of the
time ¢ can be obtained by substituting the relation @; = @;(q, p,t) into equation
(10.104). The invertibility of the transformation thus obtained is again guaranteed
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by the implicit function theorem. Indeed, equation (10.106) also ensures tha:t it
is possible to express q = q(Q, P,t) by inverting (10.104). Substituting these into

equation (10.103) we finally find p = p(Q, P,1). -]

Ezample 10.20 _ )
The function F(g, Q) = mw/2¢*cot @ generates a canonical transformation

2P
p = V2PwmcosQ, q:*\jmst,

which transforms the Hamiltonian of the harmonic oscillator

= mw?g?
p? o mwlq
2m 2

}:I(pa Q) -

into
K(P,Q) =wP. ' =

Example 10.21 _
The identity transformation p = P, ¢ = @ is not free. Hence it does not admit
a generating function of the first kind. =

After setting x = (p,q) and X = (P, Q), we see that a generating functif)n can
also depend on T, ,.--,%m; Xnyy---,Xn, for an arbitrary choice of the indices
m; and n; (all different). We quickly analyse all possible cases.

DEFINITION 10.11 A function F(q,P,t) satisfying the condition

9 F
A R (10.107)
det (aquPj) +

is called o generating function of the second kind (and it is often denoted by
F = F;) of the canonical transformation implicitly defined by

B= B T 1,...,1, (10.108)
oF

R T 2 (10.109)

Q?, BR’ ?’ k) .

Frample 10.22
Point transformations (see Example 10.9)

Q =Q(q,?)

10.4 Analytical mechanics: canonical formalism 367

are generated by
l
Fy(q,P,#) = 2 P.Qi(a,t).

l
Setting Q = q we find that F, = Zizl FP;q; is the generating function of the
identity transformation. B

DEFINITION 10.12 A function F(p,Q,t) which satisfies the condition

F
det (apian) £0 (10.110)

is called a generating function of the third kind (and it is often denoted by
F=F;) of the canonical transformation implicitly defined by

or

P S 10.111
o ( )
OF

Po=—ei=1,...,0. 10.112
ETo (10-112)

FErample 10.23
It is immediate to check that the function F(p,Q) = —p(e? — 1) generates the
canonical transformation

P=p(l1+q), Q=log(l+q). =

DEFINITION 10.13 A function F(p,P,t) which satisfies the condition

PF
T 0 10.11
det (31%-6_%) =+ ( 3)

is called a generating function of the fourth kind (and it is often denoted by
F = Fy) of the canonical transformation implicitly defined by

oF

o= e o= L, %h
8 A P b . (10.114)
OF
4= o A=,k 0.115
%= (10.115)
L]

Example 10.24
The canonical transformation of Example 10.8, exchanging the coordinates and
the kinetic momenta, admits as generating function F (p,P) = EL 1 D5 By =
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THEOREM 10.14  The generating functions of the four kinds I'), Fa, I3 and Fy
satisfy, respectively,

]
2 (pidg; — P;dQs) + (K — H) dt = dFi(q, Q,1), (10.116)
]
2. (pidg, + Qs dPy) + (K — H) dt = dT(q, P, ), (10.117)
l
2+ (—gidpi — P,dQy) + (K — H) dt = dFy(p, Q,1), (10.118)
1
2 (—¢idpi + Q; dP;) + (K — H) dt = dFy(p, P, ). (10.119)

If o canonical transformation admits more than one generating function of the
previous kinds, then these are related by a Legendre transformation:

1
Fy=F + 2 PQ;,
1
By = F — iz Dits, (10.120)

l l i I
Fy=F — zjlp?;ih + g:l PiQ; = Fo — g:lpz'%' = F3 + 22 F;Q;.
Proof
The first part of the theorem is a consequence of Definitions 10.10-10.13. The

proof of the second part is immediate, and can be obtained by adding or
subtracting Eizl P;Q; and Ei:lpi% from (10.116). O

Remark 10.22

At this point it should be clear how, in principle, there exist 2( 2;) different
kinds of generating functions, each corresponding to a different arbitrary choice
of | variables among q, p and of [ variables among Q, P. However, it is always
possible to reduce it to one of the four previous kinds, by taking into account
that the exchanges of Lagrangian coordinates and kinetic momenta are canonical
transformations (sec Example 10.8). ]

The transformations associated with generating functions exhaust all canonical
transformations.

TrroreEM 10.15 Tt is possible to associate with every canonical transformation
a generating function, and the transformation is completely canonical if and only
if its genmerating function is time-independent. The generating function is of one
of the four kinds listed above, up to possible exchanges of Lagrangian coordinates
with kinelic moments.
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Proof

Consider a canonical transformation, and let F the function associated with it
by Theorem 10.12. If it is possible to express the variables p, P as functions
of q, Q, and hence if (10.99) holds, then, as we saw at the beginnning of this
section, it is enough to set

Fi(q,Q,t) = F(P(q,Q,1),Q,1)

and the conditions of Definition 10.10 are satisfied.
If, on the other hand, we have

dg; '
det (BQ_.,) +0, (10.121)

we can deduce Q = Q(q,P,t) from the second of equations (10.97) and, by
substitubion into the first of equations (10.97), we find that the variables p can
also be expressed through q, P. Hence we set

L
FZ(qy P) t) = g’(P, Q(qa P: t):t) + 'iZ:I PﬁQl(qJ P: t)‘

The condition (10.107) is automatically satisfied, since (9F/8¢;0P;) is the
inverse matrix of (d¢;/9Q);).
Analogously, if

Op;
det (5Pj) +0, (10.122)
the variables q, P can be expressed through p, Q, and we set

!
Fy(p, Q1) = 5(P(p, Q,1), Q1) — 2= pidi(p, Q. ).

Then the conditions of Definition 10.12 are satisfied.
Finally, if

Op;
det (an) +0, (10.123)

by expressing q, Q as functions of p, P, we find that the generating function is
given by

1 1
F4(p1 P) t) = S:J(Pﬁ Q(pa P: t}ai) e l;p%éz(p7Prt) + t; P’-‘.Q'ﬁ(p)Pat)

It is always possible to choose [ variables among p, q and [ variables among P,
Q as independent variables. As a matter of fact, the condition that the Jacobian



370 Analytical mechanics: canonical formalism 10.4

matrix of the transformation is symplectic, and therefore non-singular, guarantees
the existence an [ x [ submatrix with a non-vanishing determinant. If the selected
independent variables are not in any of the four groups already considered, we
can proceed in a similar way, and obtain a generating function of a diffc?ent
kind. On the other hand, it is always possible to reduce to onc of the previous
cases by a suitable exchange of variables. =

Remark 10.23

An alternative proof of the previous theorem, that is maybe more direct and
certainly more practical in terms of applications, can be obtained simply by
remarking how conditions (10.99), (10.121)-(10.123) ensure that the Lie condi-
tion can be rewritten in the form (10.116)—(10.119), respectively. The functions
Fi,...,Fs; can be determined by integration along an arbitrary path in the
domain of definition and the invertibility of the fransformation. o

Ezxample 10.25
Consider the canonical transformation

p=2/PQlogP, g¢=e"'/PQ,

defined in D = {(P,Q) € R?|P > 0,Q > 0} C R? Evidently it is possible to
choose (g, P) as independent variables and write

621, g2

p=2%qlogP, Q= 5

The generating function Fs(q, ,t) can be found, for example, by integrating
the differential form

B(g, P,t) dg+ Q(q, P,t) dP

along the path v = {(z, )0 <z < U {(g, )]l <y < P} in the plane {q,P).
Since along the first horizontal part of the path v one has p(z,1,t) = 0 (this
simplification motivates the choice of the integration path ), we have

P
d ~ 5
Fy(g,P,t) = Cthzj Ey + Fy(t) = e® ¢ log P + Fy(t),
1

where Fy is an arbitrary function of time. m

Remark 10.24

Every generating function F' is defined up to an arbitrary additive term, a
function only of time. This term does not change the transformation gener-
ated by F, but it modifies the Hamiltonian (because of (10.105)) and it arises
from the corresponding indetermination of the difference between the Poincaré—
Cartan forms associated with the transformation (see Remark 10.18). Similarly
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to what has already been seen, this undesired indetermination can be overcome
by requiring that the function F' does not contain terms that are only functions
of . m

We conclude this section by proving a uniqueness result for the generating
function (once the arbitrariness discussed in the previous remark is resolved).

ProposITION 10.4  All the generating functions of a given canomnical transform-
ation, depending on the same group of independent variables, differ only by a
constant.

Proof :
Consider as an example the case of two generating functions F(q,Q,t) and
G(q,Q,t). The difference F — G satisfies the conditions

7] d
—(F-G)=0, —(F—-G)=0,
Lo =0 g =0)
for every 7 =1,...,l. Hence, since by Remark 10.24 we have neglected additive
terms depending only on time, F' — G is necessarily constant. |

10.5 Poisson brackets

Consider two funtions f(x,t) and g(x,t) defined in R* x R with sufficient
regularity, and recall the definition (10.16) of a standard symplectic product.

DEFINITION 10.14  The Poisson bracket of the two functions, denoted by {f, g}, is
the function defined by the symplectic product of the gradients of the two functions:

{f,9} = (Vxf) IV xg. (10.124)
H

Remark 10.25
If x = (p,q), the Poisson bracket of two functions f and g is given by

i
{f,g}zg1 (a‘f . af) : (10.125)

dq; Ip;  Bg; Bp;

Remark 10.26
Using the Poisson brackets, Hamilton’s equations in the variables (p,q) can
be written in a perfectly symmetric form as
i = {pi, H}, g =Ha, H}, i=1,...,L (10.126)
u

Remark 10.27
From equation (10.125) we derive the fundamental Poisson brackets

{pi,pi} ={264} =0, {ai,p;}= —{pi, a5} = 8. (10.127)



