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To describe the motion of a rigid body, we use two coordinate systems—an
Eaﬂn& frame and a coordinate system fixed with respect to the body. Six quantities
must be specified to denote the position of the body. These can be taken to be the
ordinates of the center of mass (which can often conveniently be made to coin-
ide with the origin of the body coordinate system) and three independent angles
that give the orientation of the body coordinate system with respect to the fixed (or
oEav system.* The three independent angles can conveniently be taken to be the
HEQEE- angles, described in Section 11.7.

It should be intuitively obvious that any arbitrary finite motion of a rigid body
om: _un considered to be the sum of two independent motions—a linear translation
of some point of the body plus a rotation about that point.” If the point is chosen
to be the center of mass of the body, then such a separation of the motion into two
umﬁm allows the use of the development in Chapter 9, which indicates that the angu-
ar momentum (see Equation 9.23) and the kinetic energy (see Equation 9.39) can
be separated into portions relating to the motion of the center of mass and. to the
‘motion around the center of mass. |

If the potential energy can also cm separated (as is always the case, for example,

for, the potential energy in a uniform force field), then the Lagrangian separates,
and the entire problem conveniently divides into two parts, one involving only
nmbﬂmaoa and the other only rotation. Each portion of the problem can then be
?am independently of the other.* This type of separation is essential for a rela-
_Ea__q :uooavro»ﬁm description of rigid-body motion.

DYNAMICS OF
RIGID BODIES

11.1 INTRODUCTION ,_._,n INERTIA TENSOR

We define a rigid body as a collection of particles whose relative distances are
constrained to remain absolutely fixed. Such bodies do not exist in nature, because
the ultimate component particles composing every body (the atoms) are always
undergoing some relative motion. This motion, however, is microscopic, and it
therefore usually may be ignored when describing the macroscopic motion of the
body. However, macroscopic displacement within the body (such as elastic defor-
mations) can take place. For many bodies of interest, we can safely neglect the
changes in size and shape caused by such deformations and obtain equations of
motion valid to a high degree of accuracy. :

It should also be clear that there is a relativistic limitation to the concept of an . P ore,
absolutely rigid body. Consider, for example, a long bar of some material. If we -
strike a blow at one end of the bar and if the bar were absolutely rigid, the effect
would be felt instantaneously at the opposite end. But this corresponds to the trans-
mission of a signal with an infinite velocity—a situation that, from relativity theory,
we know is impossible. (Actually, the velocity of transmission of mcnw a signal in.
a metal bar is rather low compared with the velocity of light—~10" m/ s—and
depends on the elastic properties of the material.)

‘We here use the idealized concept of a rigid body as a collection of &mnnoﬁ
particles or as a continuous distribution of matter interchangeably. The only nrmumm
is the replacement of summations over particles by integrations over mass density
distributions. The equations of motion are equally valid for either viewpoint.

S.m uos. direct our attention to a rigid body owavomna of n particles of masses m,,
a=1,23,...,n Ifthe body rotates with an instantaneous angular velocity e
about some point fixed with respect to the body coordinate system and if this point
moves with an instantaneous linear velocity V with respect to the fixed coordinate
system, then the instantaneous velocity of the ath particle in the fixed system can

vo=V+exr, (1L.1)

In this nruwﬁ... we use the designation body system in place of the term rotaring system used in the

Egnnsm chapter. The term fixed system will be retained.

D_EE theorem, which is even more general than this statement (it says that the line of Esm_mcon

and the axis of rotation can be made to nosanny was proven by the French mathematician Michel
hasles quml.._mmov in 1830. The proof is given, e.g., by E. T. Whittaker (Wh37, v 4).

This important point was first zealized by Euler in 1749.
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where the subscript f; denoting the fixed coordinate systein, has been deleted fro
the velocity Vo, it now being understood that all velocities are measured in the fixe
system. All velocities with respect to the rotating or body system now vani
because the body is rigid. ) ]

Because the kinetic energy of the ath particle is given by

(A x B)* = (A X B) - (A X B)
= A’B* - (A - B)?

¢

1 2
Te= FhaVa

| Toox = § 2 ma [07r = (@ 1)) 1L
we have, for the total kinetic energy, i
We now express Ty, by using the components «; and 7, ; of the vectors w and

We also note that To = (X1, ¥a2> Xo,3) i the body system, so we can write
= .,x..D,‘._.r _H,mu._.._m‘

e Tt = WM Mg M w? AM Xk ) = AM e..xn...v b5 WX j (11.8)
i _ F f J

Huwwsnﬁ<+Sbeu

Expanding the squared term, we find

H“WM§9<N+MEQ<.8XM.Q +WM~.SRAS X—.nvp
' @ a .

the origin from which the vectors r,, are measured. But if we make the origin
the body coordinate system coincide with the center of mass of the object, a
siderable simplification results. First, we note that in the second term on the 1i
hand side of this equation neither V nor e is characteristic of the ath particle
therefore, these quantities may be taken outside the summation: T

s f
Ham =z M M My | @;w; 8y M kw.k = W WX Xy
L T i f
! — 1
B m..M o w2, sn? M Ky kk.__aé.v (11.9)
nt -4 1

we define the ijth element of the sum over « to be I,

M594.8XHQH<.€XAM§QHQV :
o o
' N_.... = M My mc M H.W.__n = X .x..nt.v AHH..HOV
But now the term a &
M Mmro = MR _
is the center-of-mass vector (see Equation 9.3), which vanishes in the wo&,_m.mwm ;
because the vectors r, are measured from the center of mass. The kinetic ene : Tt = WM Iy : (11.11)
can then be written as b
' T = Tiyuns + Toot i B ,m..nmcmno: in its most restricted form becomes
where : e i
Tror =3 1w , (11.13)

where [ is the (scalar) moment of inertia about the axis of rotation. This equation
will cn,ﬂoom_&u& as the mmBEm,H expression for the rotational kinetic energy given
in elementary treatments. _
 The nine terms 7;; constitute the elements of a quantity we designated by {I}.
In form, {I} is similar to 2 3 X 3 matrix. It is the proportionality factor between
the rotational kinetic energy and the angular velocity and has the dimensions (mass)
X (length)®. Because {I} relates two quite different physical quantities, we expect
| that it is a member of a somewhat higher class of functions than has heretofore

Tans and Ty, designate the translational and rotational kinetic energies, M.Bmwn
tively. Thus, the kinetic energy separates into two independent parts. il
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been encountered. Indeed, {1} is a tensor and is known as the inertia tensor.* Note,
however, that T, can be calculated without regard to any of the special properties
of tensors, by using Equation 11.9, which noBEmS_w specifies the necessary
operations.

The clements of {I} can be obtained directly from Equation 11.10. We write
the elements in a 3 X 3 array for clarity: ’

2
MEQAHW.M + Xa3) IMSQR&L Xa2 IMEQHQLHQ&
a . a o
e, 2 2

:w = |M3QNQ.N HD‘._. MSnﬁHn._. % Hn.mv iM EQHR.N.MD..w

@ o o
2 2
|M~3QHRu.NRH IMSnHFu Xa2 ' M Me(Xg) + xz2)

o a e

(11.13a)

Equation 11.10 is a.compact way to write the inertia tensor components, but
Equation 11.132 is an imposing chcou. WUN cm:ﬁ COMPONENts (X4 Yar Zo) instead

of (x41, Xa2, Xa3) and letting ri=x%+y:+ 2% mpamﬁoa 11.13a can be written
as

MSQT.N - .a.. M.ﬂn&nu\n IMwBQ.NQNQ
{1 = |M5a%ak& MSQQW - %Wu [MSQ%RNR (11.13b)
a a a
IMEQNQHQ I.MSRNQ%Q M_S.nmww o va
@ @ )

which is less imposing and more recognizable. We continue, however, with the
X, notation because of its utility.

The diagonal elements, I};, Iz, and Is3, are called the moments of inertia
about the x;-, X,-, and xz-axes, respectively, and the negatives of the off-diagonal
elements Iy, J;3, and so forth, are termed the products of inertia.” It should be
clear that the inertia 'tensor is symmetric; that is,

Iy= 1Ly : (11.14)

if
and, therefore, that there are only six independent elements in {I}. Furthermore, the
inertia tensor is composed of additive elements; the inertia tensor for a body can
be considered to be the sum of the tensors for the various portions of the body.
Therefore, if we consider a body as a continuous distribution of matter with mass
density p = p(r), then

L= o) | 8; > xi — xx; | dv (11.15)

* The true test of a tengor lies in its behavior under a coordinate transformation (see Section 11.6).
" Introduced by Huygens in 1673; Euler coined the name.
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where dv= dx; dx; dx; is the element of volume at the position defined by the
vector I, and where V is the volume of the body.

EXAMPLE e ...............................................

Calculate the inertia tensor of a homogeneous cube of density p, mass M, and
side of length b. Let one corner be at the origin, and let three adjacent edges
lie along the coordinate axes (Figure 11-1). (For this choice of the coordinate
axes, it should be obvious that the origin does not lie at the center of mass;
we return to this point'later.)

Solution: According to Equation 11.15, we have
b b b
Iy = b.—o dxy .ﬁo dry(x3 + x3) g.o dxy

—2 35 _ 202
[mh@ lmﬁw

It should be easy to see that all the diagonal elements are equal and, further-
more, that all the off-diagonal elements are equal. If we define g = Mb?, we have

Iy=Ip=1I

2
B
ha=ly == Iwm

*3

FIGURE 11-1
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The moment-of-inertia tensor then becomes

B B
M=1-38 318 —iB
3B —B iB

We shall continue the investigation of the moment-of-inertia tensor for the cube
in later sections.

11.3 ANGULAR MOMENTUM

With respect to some point O fixed in the body coordinate system, the angular
momentum of the body is

L=3 . %0 _ (11.16)

The most convenient choice for the position of the point O depends on the partic-
ular problem. Only two choices are important: (a) if one or more points of the body
are fixed (in the fixed coordinate system), O is chosen to coincide with one such
point (as in the case of the rotating top, Section 11.10); (b) if no point of the body
is fixed, O is chosen to be the ‘center of mass.

Relative to the body coordinate system, the linear momentum P. is
vnn = SQ{Q = Sbhxv x H.Q
Hence, the angular momentum of the body is

L=2 mu, % (0 Xr,) (11.17)

The vector identity
A X (BXxA)=AB - A(A-B)

can be used to express L:

L = malrie — ryr, - )] (11.18)

The same technique we used to write T, in tensor form can now be applied
here. But the angular momentum is a vector, so for the ith component, we write

11.3 ANGULAR MOMENTUM --- 411

> Mg Ae,. M Xk = Xy M oy Y
a k i
My 2
7

I
Il

2
> | @by Mm Xaj = WXgiXa,j

R

M. wj; M Me m_.‘.. M Hw.k = XaiXa,j AHH.HWV
J [ 4

The summation over « can be recognized (see Equation 11.10) as the #jth element
of the inertia tensor. Therefore,

Li=3 Iy (11.20a)
J

or, in tensor notation,
L={I}:® (11.20b)

Thus, the inertia tensor relates a sum over the components of the angular velocity
vector to the ith component of the angular momentum vector. This may at first seem
a somewhat unexpected result; for, if we consider a rigid body for which the inertia
tensor has nonvanishing off-diagonal elements, then even if @ is directed along,
say, the x;-direction, @ = (w, 0, 0), the angular momentum vector in general has
nonvanishing components in all three directions: L = (L,, L,, L3); that is, the angu-
lar momentum vector does not in general have the same direction as the angular
velocity vector. (It should be emphasized that this statement depends on
I # 0 fori # j; we return to this point in the next section.)

As an example of w and L not being colinear, consider the rotating durnbbell
in Figure 11-2. (We consider the shaft connecting m, and m;, to be weightless and
extensionless.) The relation connecting r,, v,, and o is

Vo= XTI,
and the relation connecting r,, v,, and L is

L =2 meTe X Ve
o "

It should be clear that e is directed along the axis of rotation and that L is per-
pendicular to the line connecting m; and m,.

We note, for this example, that the angular-momentum vector L does not
remain constant in time but rotates with an angular velocity w in such a way that

it traces out a cone whose axis is the axis of rotation. Therefore L # 0. But Equa-
tion 9.31 states that

L=N . (11.21)

where N is the external torque applied to the body. Thus, to keep the dumbbell
rotating as in Figure 11-2, we must constantly apply a torque.
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Rotation axis

FIGURE 11-2

We can obtain another result from Equation 11.20a by multiplying L; by 3o;
and summing over i

1D ol = WN L) = Tea (11.22a)

where the second equality is just Equation 11.11. Thus,

T =lw L (11.22b)

Equations 11.20b and 11.22b illustrate two important properties of tensors. The
product of a tensor and a vector yields a vector, as in

L={l}'®

and the product of a tensor and two vectors yields a scalar, as in
— 1
Ta=3;0-L=0-{} -0

We shall not, however, have occasion to use tensor equations in this form. We use
only the summation (or integral) expressions as in Equations 11.11, 11.15, and
11.20a.

examere QEIER - G EELEEE PR L LR R

Consider the pendulum shown in Figure 11-3 composed of a rigid rod of length
b with a mass m, at its end. Another mass (m,) is placed halfway down the
rod. Find the frequency of small oscillations if the pendulum swings in a plane.
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Lt
Out of
plane

FIGURE 11-3

Solution: 'We use the methods of this chapter to analyze the system. Let the fixed
and body systems have their origin at the pendulum pivot point. Let e, be along

the rod, e; be in the plane, and e be out am the plane (Figure 11-3). The angular
velocity is

® = wye; = By (11.23)

We use Equation 11.10 to find the inertia tensor. All the mass is along e,, with Xy
= b and x; = b/2. All other components of x, equal zero.

= m(8yx%,1 — xy, iX1,) + my(Syx3 ) — X2,:X2,7) (11.24)

The inertia tensor, mmcmnon 11.13a, becomes

0 0 0
B2
W={0  ms+m 0 (11.25).
WM
0 0 SHWN + SNM

We determine the angular momentum from Equation 11.20a:
.ﬁ_u =0
Loi=i0 (11.26) .
WN
h.w = Nmuacw = AS-@M + Enhvm

The only external force is gravity, which causes a torque N on the system. Because
L =N, we have

2
?,% - s..w vm& = M ry X F, (11.27)
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Because the gravitational force is down,
g = g cos fe; — g sin e,
Thus,
r; X F; = be; X (cos fe, — sin fey)myg = —m, gb sin fe;

b
r, X F, = w..: X (cos fe; — sin fey)mag = lspwwmw. fes

Equation 11.27 becomes

2 A . m
B{m +7F) 8= —bgsin 6 m + % (11.28)
and the frequency of small oscillations is
nmy -+ E
=k " (11.29)
: my “+ .lwm.ml b .

We can check Equation 11.29 by noting that wg g
. o =~ g/b for my 3> m, and wj ~
2g/b for my >> my as it should. H ’ ?

This example could have just as easily been solved by finding the kinetic

energy from Equation 11.22a and using Lagrange’s equations of motion. We would
then have

o | = X A2
Tt = 503L3 = swily

, = W WM 2 WN n2
=™ by 0 (11.30)

b
U= —mgbcos — Spm.m cos 6 (11.31)

ﬁ.\&mam U=20at Eo origin. The equation of motion (Equation 11.28) follows
directly from a mﬂﬂmrmogm& application of the Lagrangian technique. _

11.4 PRINCIPAL AXES OF INERTIA*

It should be mHoE. &mn ».noEEmEEm simplification in the mxm..aom&gm for T and L
would result if Ew Inertia tensor consisted only of diagonal elements. If we could

* Discovered by Euler in 1750.
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write
Iy = I8y (11.32)
then the inertia tensor would be
L 0 0
{I}=40 L O ©(11.33)
0 0 I
We would then have
L=, Idw; = Loy (11.34)
I
and
Trot = 2 Iibyoiy = 1 3 T} C(11.35)
N i

Thus, the condition that {I} have only diagonal elements provides quite simple
expressions for the angular momentum and the rotational kinetic energy. We now
determine the conditions under which Equation 11.32 becomes the description of
the inertia tensor. This involves finding a set of body axes for which the products
of inertia (i.e., the off-diagonal elements of {I}) vanish. We call such axes the prin-
cipal axes of inertia. _

If a body rotates around a principal axis, both the angular velocity and the
angular momentum are, according to Equation 11.34, directed along this axis. Then,
if I'is the moment of inertia about this axis, we can write

L=l . (11.36)
Equating the components of L in Equations 11.20a and 11.36, we have
Ly = Iw; = Iy + Iiz@p + Diats
Ly = Ion = Iy + Inpwy + I3 (11.37)
Ly = Iwy = Iy + Inpwy T Iz33 |
Or, collecting terms, we obtain
(I = Dy + Tipwy + Ii3w; =0
Lyoy + oz = Dwp + 1303 =0 » (11.38)

Iy + Ipw + (i3 — Dws =0 )

The condition that these equations have a nontrivial solution is that the deter-
minant of the coefficients vanish:

u-=D Ia I3
I (I —1) by (=00 (11.39)
Iy I3 Iz —1I) _
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The expansion of this determinant leads to the secular equation™ for I, which is
a cubic. Each of the three roots corresponds to a moment of inertia about one of
the principal axes. These values, I;, I, and Iy, are called the principal moments
of inertia. If the body rotates about the axis corresponding to the principal moment
I, then Equation 11.36 becomes L = I;c—that is, both e« and L are directed along
this axis. The direction of & with respect to the body coordinate system is then the
same as the direction of the principal axis corresponding to I;. Therefore, we can
determine the direction of this principal axis by substituting I; for I in Equation
11.38 and determining the ratios of the components of the angular-velocity vector:
@)1y ws. We thereby determine the direction cosines of the axis about which the
moment of inertia is I;. The directions corresponding to /> and I3 can be found in
a similar fashion, That the principal axes determined in this manner are indeed real
and orthogonal is proved in Section 11.6; these results also follow from the more
general considerations given in Section 12.4.

The fact that the diagonalization procedure just described yields only the ratios
of the components of « is no handicap, because the ratios completely determine
the direction of each of the principal axes, and it is only the directions of these
axes that is required. Indeed, we would not expect the magnitudes of the w; to be
determined, because the actual rate of the body’s angular motion cannot be specified
by the geometry alone. We are free to impress on the body any magnitude of the
angular velocity we wish. '

For most of the problems encountered in rigid-body dynamics, the bodies are
of some regular shape, so we can determine the principal axes merely by examining
the symmetry of the body. For example, any body that is a solid of revolution (e.g.,
a cylindrical rod) has one principal axis that lies along the symmetry axis (e.g., the
center line of the cylindrical rod), and the other two axes are in a plane perpen-
dicular to the symmetry axis. It should be obvious that because the body is sym-
metrical, the choice of the angular placement of these other two axes is arbitrary.
If the moment of inertia along the symmetry axis is [;, then I = I for a solid of
revolution—that is, the secular equation has a double root.

If a body has I; = I, = I, it is termed a spherical top; if [; = I, # I, it is
termed a symmetric top; if the principal moments of inertia are all distinct, it is
termed an asymmetric top. If a body has I} = 0, I, = I3, as, for example, two
point masses connected by a weightless shaft, or a diatomic molecule, it is called
a rotor.

EXAMPLE e ...............................................

Find the principal moments of inertia and the principal axes for the cube in
Example 11.1. ,

* S0 called because a similar equation describes secular perturbations in celestial mechanics. The math-
ematical terminology is the characteristic polynomial.
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mom__a._o.m" . In Example 11.1, we found that the moment-of-inertia tensor for a cube
Qﬁ& origin at one corner) had nonzero off-diagonal elements. Evidently, the coor-
dinate axes chosen for that calculation were not principal axes. If, for example, the

cube rotates mcoE,, the x3-axis, then @ = wye; and the angular momentum vector
L (see Equation 11.37) has the components

L = —;Bw;s
Ly = —;Bws
Ly= .w.meu

Thus,

— M2y 1 2
L ,E@ wi(—ze — e+ e
which is not in the same direction as .
To find the principal moments of inertia, we must solve the secular equation

20 1 —
-1 - -l
—B -1 -8 =0 (11.40)
—4 1 2o _
B =g p-1
The value of a determinant is not affected by adding (or subtracting) any row (or.

..uoEnSV from any other row (or column). Equation 11.40 can be solved more easily
if we subtract the first row from the second:

2o =i —
= =B W_m
11
—zB+I 2B-1 0 |=0
=B B -1
We can factor Aw_m — I} from the second row:
2
m____w =1 lm_m Im_m
G8-hHl -1 1 "0 |=0
_lg _ig 2g_
L
Expanding, we have

GB - DIEB— 1P 1% - 8B - ] =0
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which can be factored to obtain
GB-DEB-DEB—-1)=0
Thus, we have the following roots, which give the principal moments of inertia:
bnw_m. FHW. ~mﬂw_m

The diagonalized moment-of-inertia tensor becomes

8 0 0
=40 28 0 , (11.41)
O O 11

2

Because two of the roots are identical, I, = I3, the principal axis associated with
I} must be an axis of symmetry. )

To find the direction of the principal axis associated with f;, we substitute for
I in Equation 11.38 the value [ = I} = 1:

GB = Pwy; — 1Bwy — B3 =0
= 3Bwy; + CB — 1Bwy — 1Bws =0

=3B — ey + CB = iB)wsy =0

where the second subscript 1 on the w; signifies that we are considering the prin-
cipal axis associated with ;. Dividing the first two of these equations by 8/4, we
have

20 — Wy — w3 =0 (11.42)
=yt 2wy —wy =0

Subtracting the second of these equations from the first, we find w;; = wy,. Using
this result in either of the Equations 11.42, we obtain w;; = @y = ws;, and the
desired ratios are

Wyiwypiws = 1:1:1

Therefore, when the cube rotates about an axis that has associated with it the
moment of inertia I; = 8 = {Mb? the projections of & on the three coordinate
axes are all .Bﬁn. Hence, this principal axis corresponds to the diagonal 'of the
cube.

Because the moments I, and I are equal, the orientation of the principal axes
associated with these moments is arbitrary; they need only lie in a plane normal to
the diagonal of the cube.
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11.5 MOMENTS OF INERTIA FOR DIFFERENT
BODY COORDINATE SYSTEMS

For the kinetic energy to be separable into translational and rotational portions (see
Equation 11.6), it is, in general, necessary to choose a body coordinate system
whose origin is the center of mass of the body. For certain geometrical shapes, it
may not always be convenient to compute the elements of the inertia tensor using
such a coordinate system. We therefore consider some other set of coordinate axes
X, also fixed with respect to the body and hiaving the same orientation as the x-
axes but with an origin Q that does not correspond with the origin O (located at
the center of mass of the body coordinate system). Origin @ may be located either
within or outside the body under consideration,

The m_oﬂoﬂa of the inertia tensor relative to the X-axes can be written as
Jj=2ma| 8 2 X2 — X, X, ). (11.43)
a k ‘

If the vector connecting Q with O is a, then the mmwﬂ.m_ vector R (Figure 11-4) can
be written as

R=a-+r (11.44)
with components

N.. =a;+ X; AHH.AMV
Using Equation 11.45, the tensor element J;; becomes

Jy= 2, my u@.M Fak T @)* = (Kgs + @) + @)
o
= M My mm M Hw.k T KXo X,
(=3

X, X3

FIGURE 11-4
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{

| + M My A i M (2% a8 + nav - ﬁa.xn g T Gxay + Pnbv (11.46) Xa *a
| o l
| :
_7 Identifying the first summation as N_..“ we have, on regrouping,
Vﬂ,_ E 0 X2
__ Q|N¢+M5QAM Mﬁw|hﬁxv
i 2
il ay
il .
__ o M My AN@&. M Ko = QiXei — h‘..unn.u.v 0 ! i X,
7 But each term in the last summation involves a sum of the form \x
i,%
Smaae 0 o e e
a ; X,
We know, however, that because O is located at the center of mass, FIGURE 11-5
M myre=0". A
ki -4 ' }
,_ or, for the kth component, _ igure 11-3. Element 1, is
W,_,f ’ Msuaa.ku.o Ly = Jyy — M((a} + &5 + d3) 8;, — a}]

e . = Ju = M(d} + dj)
Therefore, all such terms in Equation 11.47 vanish and we have
. : g Ena states that the difference between the elements is equal to Em mass of the
Tp= Iy M . ﬂ & M o — P.ng_v (11.48) - o..._w nivltiplied by the square of the distance between the paralle]l axes HE this
- ; ; ase, between the x;- and X;-axes).

But
MEaHg and anﬂnp

> k AMPLE e ........ - S —— st

id the inertia tensor of the cube of Example 11.1 in a coordinate system with

Solving for I;, we have the result NE at the center of mass.

N...... =Jy— Ehhum.u. = P.n,_.....v

E_Ea-." In Example 11.1, with the origin at the corner of the cube, we found
he inertia tensor to be

which allows the calculation of the elements I;; of the desired inertia tensor (with
origin at the center of mass) once those with respect to the X;-axes are known. ‘Th
second term on the right-hand side of Equation 11.49 is the inertia tensor Hmmndma
i to the origin Q for a point mass M.

Equation 11.49 is the general form of Steiner’s parallel-axis Enonu:r* th
| simplified form of which is given in elementary treatments. Consider, for example

Syt —iMp? -iMp?
Uy=y-* Myt -t (11.50)

a2 _lafp2 2a012
Mb iﬁ\w “Mb

, - may now use Equation 11.49 to obtain the inertia tensor {1} referred to a coor-
dinate Ssystem with origin at the center of mass. In keeping with the notation of this

ction, we call the new axes x; with origin O and call the previous axes X; with
rigin Q at one corner of the cube (Figure 11-6).

* Jacob Steiner (1796-1863).
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X3 X3 |

Xz

Xz

FIGURE 11-6

The center of mass of En,na.oa is at the point (b/2, b/ .N, b/2) in the X; coor- ] ,

dinate system, and the components of the vector a therefore are
ay=a=az=b/2

From Equation 11.50, we have

Ju=Jp=Ja= m?«wu

Jp=Jp=Jtpn=- WEWN
And applying Equation 11.49, we find
Iy =Jy — M@ - nnU
=Jy- Eﬁn\w + nwV
=2 Mp% - L MB® =1 Mb?
3 2 T
and
liy = Ji2 — M(—a,a,) _
| 2 .1 2 i
= —Mb° + Mb* =0 . .
Altogether, we have

Ly = Iy = I3 = tMb*

lpo=liz=I5L3=0

The inertia tensor is therefore diagonal:

LM 0 0 . |

M=y 0 mM¥* o0 (11.51)

0 0 imp?

6
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If we factor out the common term Mb? from this expression, we can write

= WE% {1} (11.52)
where {1} is the unit tensor:
10 0
{1}=40 1 © (11.53)
0 0 1

Thus, we find that, for the choice of the origin at the center of mass of the
cube, the principal axes are perpendicular to the faces of the cube. Because, from
a physical standpoint, nothing distinguishes any one of these axes from another,
the principal moments of inertia are all equal for this case. We note further that, as
long as we maintain the origin at the center of mass, then the inertia tensor is the
same for any orientation of the coordinate axes and these axes are equally valid
principal axes.*

11.6 FURTHER PROPERTIES OF ._._._,.m INERTIA TENSOR

Before attacking the problems of rigid-bady dynamics by obtaining the general
equations of motion, we should consider the fundamental importance of some of
the operations we have been discussing. Let us begin by examining the properties
of the inertia tensor under coordinate transformations."

We have already obtained the fundamental relation connecting the inertia ten-
sor and the angular momentum and angular velocity vectors (Equation 11.20),
which we can write as

L= 2, Iuw (11.54a)
i

Because this is 2 vector equation, in a coordinate system rotated with respect to the
system for which Equation 11.54a applies, we must bave an entirely analogous
relation,

Li=73 Nl (11.54b)
J

where the primed npmuanom all refer to the rotated system. Both L and @ obey the
standard transformation equation for vectors (Equation 1.8):

X = M >.M_N.“.. = M »f\.ﬂu_
J J

/

*In this regard, the cube is similar to a sphere as far as the inertia tensor is concerned (i.e., for an
origin at the center of mass, the structure of the inertia tensor elements is not sufficiently detailed to
discriminate between a cube and a sphere).

T We confine our attention to rectangular coordinate systems so that we may ignore some of the more
complicated properties of tensors that manifest themselves in general curvilinear coordinates.
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We can therefore write

Li= X Ak (11.55a)

and

=2 A\ (11.55b)
J

If we substitute Equations 11.552 and b into Equation 11.54a, we obtain

2 AmL = 2y 2, Ao} (11.56)
m ' J
Next, we multiply both sides of this equation by A; and sum over k:

(3 ».ii_v =3 AM X zav (11.57)

m

,EaSE._Ewﬁg_&omnmoz&g&gﬁamana.ﬁzm_s,mowoﬁonénm&omaS-
mation over m we obtain :

M. AM AiA %v (11.58)
For this equation to be identical with Equation 11.54b, we must have

= M >.__...n>g.__NE AHH.MS

This is therefore the rule that the inertia tensor must obey under a coordinate trans-
formation. Equation 11.59 is, in fact, the general rule specifying the manner in
which any second-rank tensor must transform. For a tensor {T} of arbitrary rank,
the statement is* ,

abeds, = M >E.>£>%>E N...E... (11.60)

ik,

Note that we can write Equation 11.59 as

Iy= W Aid iy (11.61)

Although matrices and tensors are distinct types of mathematical objects, the

* Note that a tensor of the first rank transforms as

= M Aally

Such a tensor is in fact a vector. A tensor of zero rank implies that T* = 7, or that such a tensor is a
scalar. The properties of quantities that transform in this manner were first discussed by C. Niven in
1874. The application of the term tensor to such quantities can be traced to J. Willard Gibbs.
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manipulation of tensors is in many respects the same as for Emﬁoom Thus, Equa-
tion 11.61 can be expressed as a matrix equation:

I' = AN (11.62)

where we understand 1 to be the matrix consisting of the elements of the tensor
{I}. Because we are considering only orthogonal transformation matrices, the trans-
pose of A is equal to its inverse, so we can express Equation 11.62 as

I = AR | (11.63)

A transformation of this general type is called a similarity transformation (I’ is
sirnilar to I).

EXAMPLE e ...............................................

Prove the assertion stated in Example 11.4 that the inertia tensor for a cube
(with origin at the center of mass) is independent of the orientation of the axes.

Solution: The change in the inertia tensor under a rotation of the coordinate axes

can be computed by making a similarity transformation. Thus, if the rotation is
described by the matrix A, we have

= xIx"!? (11.64)

But the matrix I, which is derived from the elements of the tensor {1} (Equation
11.52 of Example 11.4), is just the identity matrix 1 multiplied by 2 constant:

1 00
I=:Mp* {0 1 0 = IMb*1 (11.65)
) 0 0 1

Therefore, the operations specified in Equation 11.64 are trivial:

V= MPNINT = IMPANT = 1P = (11.66)

1
6

Thus, the transformed inertia tensor is identical to the original tensor, independent
of the details of the rotation.

Let us next determine what oonn.mﬁou must be satisfied if we take an arbitrary
inertia tensor and perform a coordinate rotation in such a way that the transformed
inertia tensor is diagonal. Such an operation implies that the quantity I; in Equation
11.59 must satisfy (see Equation 11.32) the relation

Iy=15; (11.67)
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Thus,
I8y = M?.»P_.LE (11.68)

If we multiply both sides of this mnsmmom by Ay, and sum over i, we obtain
M N—\..._E%c_ — M M >__..=>=a P.t.hi AHH.QWV
i wl \T

The term in parentheses is just ., so the summation over i on the left-hand side
of the equation and the summation over k on the right-hand side yield

I\ = 2 Al _ (11.70)
i
Now the left-hand side of this equation can be written as
B = 2 [\id (11.71)
so Equation 11.70 becomes g
M LiAjpSpy = M Al . (11.722)
or , . .
2 s = L8, = 0 (11.72b)

This is a set of simultaneous linear algebraic equations; for each value of j there
are three such equations, ‘one for each of the three possible values of m. For a
nontrivial solution to exist, the 'determinant of the coefficients must vanish, so the
principal moments of inertia, [;, I, and I3, are obtained as roots of the secular
determinant for I: '

| Iy = I8, = 0 . (AL73)

This equation is just Equation 11.39; it is a cubic equation that yields the principal
moments of inertia.

Thus, for any inertia tensor, the elements of which are computed for a given
origin, it is possible to perform a rotation of the coordinate axes about that origin
in such a way that the inertia tensor becomes diagonal. The new coordinate axes
are then the principal axes of the body, and the new moments are the principal
moments of inertia. Thus, for any body and for any choice of origin, there always
exists a set of principal axes.

exampie QR ----------------------- s e e

For the cube of ,ﬁgﬁm 11.1, diagonalize the inertia tensor by rotating the
coordinate axes.
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Solution: We choose the origin to lie at one corner and perform the rotation in
such a manner that the x;-axis coincides with the diagonal of the cube. Such a
rotation can conveniently be made in two steps: first, we rotate through an angle

of 45° about the x3-axis; second, we rotate through an angle of cos™! T\mv about
the x3-axis. The first rotation matrix is

L1
V2 V2
A= -t .P 0 (11.74)
IV v )
, 0 0 1
and the second rotation matrix is
2 1
— O —
3 V3
A= 0 1 0 (11.75)
1 2
i O ) pa,
V3 3

—_ 1 1 1
V3
1 3 3
O = — =\ /= il 3
3 /\M /\M o | QLe
1 1

i \v vV

The matrix form of the transformed inertia tensor (see Equation 11.62) is

S Sl Sl

I'=XIN (11.77)
or, factoring 3 out of |,

WIN B
|

)=
—
|

W] PIW

s
Bl
WK A
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11V2

1 1 (VL 143 _uye
6 122 122
-1 DY Ry CO | DU CPY R (R0
31 V2 V2 6 12V2 122
1 1 1 11
ey ey g VS 0 2
V2 V2 Va 6 12 V2
1
m 0 0
11
=10 38 0 (1.78)
11
O fIiE
° 3

Equation 11,78 is just the matrix form of the inertia tensor found by the diag-

onalization procedure using the secular determinant (Equation 11.41 of Example
11.3).

We have demonstrated two general procedures to diagonalize the inertia tensor.
We previously pointed out that these methods are not limited to the inertia tensor
but are generally valid. Either procedure can be very complicated. For example, if
we wish to use the rotation procedure in the most general case, we must first con-
struct a matrix that describes an arbitrary rotation. This entails three separate rota-
tions, one about each of the coordinate axes. This rotation matrix must then be
applied to the tensor in a similarity transformation. The off-diagonal elements of
the resulting matrix* must then be examined and values of the rotation angles deter-
mined so that these off-diagonal elements vanish. The actual use of such a pro-
cedure can tax -the limits of human patience, but in some simple situations, this
method of diagonalization can be used with profit. This is particularly true if the
geometry of the problem indicates that only a simple rotation about one of the
coordinate axes is necessary; the rotation angle can then be evaluated without dif-
ficulty (see, for example, Problems 11-16, 11-18, and 11-19).
. H.n practice, there are systematic procedures for finding principal moments and
principal axes of any inertia tensor. Standard computer programs and hand-calcu-
lator methods are available to find the n roots of an nth-order polynomial and to

diagonalize a matrix. When the principal moments are known, the principal axes
are easily found.

* A large sheet of paper should be used!
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The example of the cube illustrates the important point that the elements of the
inertia tensor, the values of the principal moments of inertia, and the orientation of
the principal axes for a rigid body all depend on the choice of origin for the system.
Recall, however, that for the kinetic energy to be separable into translational and
rotational portions, the origin of the body coordinate system must, in general, be
taken to coincide with the center of mass of the body. However, for any choice of
the origin for any body, there always exists an orientation of the axes that diago-
nalizes the inertia tensor. Hence, these axes become principal axes for that particular
origin. |

Next, we seek to prove that the principal axes actually form an orthogonal set.
Let us assume that we have solved the secular equation and have determined the
principal moments of inertia, all of which are distinct. We know that for each prin-
cipal moment there exists a corresponding principal axis with the property that, if
the angular velocity vector w lies along this axis, then the angular momentum vec-
tor L is similarly oriented; that is, to each I; there corresponds an angular velocity

o; with components Wy, Wy, @y (We use the subscript on the vector « and the
mooona subscript on the components of w to designate the principal moment with
which we are concerned.) For the mth principal moment, we have

H...wn = dmWim Q.H.QWV
In terms of the elements of the moment-of-inertia tensor, we also have
= P ki (11.80)
k

Combining these two relations, we have
PN L (11.81a)
k
Similarly, we can write for the nth principal moment:

M [itwin = In@yn (11.81b)

If we multiply Equation 11.81a by ®;, and sum over i and then multiply Equation
11.81b by wy, and sum over k, we have

M L@ Win = M L @i i
i, i

M T Wi = Mk,. L0 m
1,

(11.82)

The left-hand sides of these equations are identical, because the inertia tensor is
symmetrical (I = I;). Therefore, on subtracting the second equation from the first,
we have

M WinWin — N M WpmWrn = 0 ﬁ—.”_..mwv

\
Because i and k are both dummy indices, we can replace them by [, say, and obtain
U = 1)2) o = 0 (11.84)
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By hypothesis, the mﬁuo.ﬁa moments are distinct, so that I, # I,. Therefore, Equa-
tion 11.84 can be satisfied only if

M Ot i, = 0 (11.85)

But this summation is just the definition of the scalar product of the vectors. @,
and w,. Hence,

®p " 0, =0 (11.86)

Because the principal moments /,, and [, were picked arbitrarily from the set of
three moments, we conclude that each pair of principal axes is perpendicular; the
three principal axes therefore constitute an orthogonal set.

If a double root of the secular equation exists, so that the principal moments

are I}, I, = I, then the preceding analysis shows that the angular velocity vectors
satisfy the relations '

) Lws, ®; L w;

but that nothing may be said regarding the angle between v, and ;. But the fact
that I, = I implies that the body possesses an axis of symmetry. Therefore,
lies along the symmetry axis, and o, and o3 are.required only to lie in the plane
perpendicular to w;. Consequently, there is no loss of generality if we also choose
wy L 3. Thus, the principal axes for a rigid body with an axis of symmetry can
also be chosen to be an orthogonal set.

We have previously shown that the principal moments of inertia are obtained
as the roots of the secular equation—a cubic equation. Mathematically, at least one
of the roots of a cubic equation must be real, but there may be two imaginary roots.
If the diagonalization procedures for the inertia tensor are to be physically mean-
ingful, we must always obtain only real values for the principal moments. We can
show in the following way that this is a general result. First, we assume the roots
to be complex and use a procedure similar to that used in the preceding proof. But
now we must also allow the quantities wy,, to become complex. There is no math-
ematical reason why we cannot do this, and we are not concerned with any physical
interpretation of these quantities. We therefore write Equation 11.81a as before, but
we take the complex conjugate of Equation 11.81b:

Mh.w&@:ﬂ?&..s
&

(11.87)
DIkt =ik,

Next, we multiply the first of these equations by w¥, and sum over i and multiply
the second by wy, and sum over k. The inertia tensor is symmetrical, and its ele-

ments are all real, so that [z = I, Therefore, subtracting the second of these equa-

tions from the first, we find

(i, — I M Wy, =0 (11.88)
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For the case m = n, we have
Un = IR 2, 0pn 01 =10 - (11.89)
i

The sum is just the definition of the scalar product of ), and wz;:
W@k =0, =0 (11.90)

Therefore, because the squared magnitude of @, is in general positive, it must
be true that I,, = I for Equation 11.89 to be satisfied. If a quantity and its complex
conjugate are equal, then the imaginary parts must vanish identically. Thus, the
principal moments of inertia are all real. Because {1} is real, the vectors ., must
also be real.

If m # n in Equation 11.88 and if I,, # I,, then the equation can be satisfied
only if ®,, - w, = 0; that is, these vectors are orthogonal, as before.

In all the proofs carried out in this section, we have referred to the inertia

. tensor. But examining these proofs reveals that the only properties of the inertia

tensor that have actually been used are the facts that the tensor is symumetrical and
that the elements are real. We may therefore conclude that any real, symmetric
tensor* has the following properties: ,

1. Diagonalization may be accomplished by an appropriate rotation of axes,
that is, a similarity transformation. '

2. The eigenvalues' are obtained as roots of the secular determinant and are
real.

3. The eigenvectors’ are real and orthogonal.

11.7 EULERIAN ANGLES

Hwonmbmmoﬂammon»._,oaouanooH&nmnomwmnnBﬁomboﬁnnng.conoﬁnomgﬁng
a matrix equation of the form ' ,

X = A’

If we identify the fixed system with X’ and the body system with X, then the rota-
tion matrix A completely describes the relative orientation of the two systems. The
rotation matrix A contains three independent angles. There are many possible
choices for these angles; we find it convenient to use the Eulerian mnwsm* ¢, 6,
and .

% To be more precise; we require only that the elements of the tensor obey the relation [y, = [3;; thus
we allow the possibility of complex quantities. Tensors @Egﬁngv with this property are said to be
Hermitean. '

! The terms eigenvalues and eigenvectors are the generic names of the quantities, which, in the case of
the incrtia tensor, are the principal moments and the principal axes, respectively. We shall encounter
these terms again in the discussion of small oscillations in Chapter 12.

* The rotation scheme of Euler was first published in 1776.
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Hsomﬁanmum:%omﬂammnﬁmﬁ&p&mmo:osimmmnnmomnoﬁmoum.éEnr
takes the x| system into the x; system®: _

1. The first rotation is counterclockwise through an angle ¢ about the xj-axis
(Figure 11-7a) to transform the x; into the x. Because the rotation takes
place in the xi-x5 plane, the transformation matrix is

cos ¢ sin ¢ 0\
Ay=| —singd cosd 0 (11.91)
0 0 1,
and
X' = Agx' _ (11.92)

2. The second rotation is counterclockwise through an angle @ about the x}-axis
(Figure 11-7b) to transform the x7 into the x'7. Because the rotation is now

Line of nodes

fc)
FIGURE 11-7

* The designations of the Euler angles and even the manner in which they are generated are not uni-
versally agreed upon. Therefore, some carc must be taken in comparing any results from different
sources. The notation used here is that most commonly found in modem texts.
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in the x%-x3 plane, the transformation matrix is

1 0 0
Ao=1|0 cos 8 sin @ (11.93)
0 —sinf@ cos@

and
X" = Ngx" (11.94)

3. The third rotation is counterclockwise through an angle ¢ about the x3-axis
(Figure 11-7c) to transform the x¥ into the x;. The transformation matrix is

cos sinyg O
Ay=|-—sing cosy O (11.95)
0 0 1
and
X = Aygx" (11.96)

The line common to the planes containing the x;- and xp-axes and the
x}- and x4-axes is called the line of nodes. The complete fransformation from the
x; system to the x; system is given by

X = AgX" = AyAgX” (11.97)
= Nghogkgh!
and the rotation matrix A wm,
A= AyAphy (11.98)
The components of this matrix are
Aq1 = cos Yrcos ¢ — cos sin ¢ sin 4
Ay = —sin eoom_ & — cos 0 sin ¢ costy
Az = sin @sin ¢ _qm
A1z = c0s ¥ sin ¢ + cos 6 cos ¢ sin Y A
Ay = —sin Yrsin ¢ + cos 6 cos ¢ cos v (11.99)

Asz = —sin fcos ¢
Az =sinsinf
Ags = cOs i sin 8
Azz = cos m\ : )

(The components A; are off-set in the preceding equation to assist in the visual-
ization of the complete A matrix.)
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Because we can associate a vector with an infinitesimal rotation, we can asso-

ciate the time derivatives of these rotation angles with the components of the angu-
lar velocity vector w. Thus,

_ wg= ﬁ
wg= @ (11:100)
Wy = n_m\

The rigid-body equations of motion are most conveniently expressed in the
body coordinate system (i.e., the x; system), and therefore we must express the
components of e in this system. We note that in Figure 11-7 the angular velocities
&, 6, and s are directed along the following axes:

b  along the x}- (fixed) axis
0 along the line of nodes
{s  along the x3- (body) axis

The components of these angular velocities along the body coordinate axes are

m: — & sin 0 sin

¢ = ¢ sin O cos ¥ (11.101a)
¢s = doos 8 .

6, = §cos i

b= —Osin ¢ i (11.101b)
;=0

fa=0

dp=0 (11.101¢)
__ﬂ_\m = %

Collecting the individual components of , we have, finally,

@ =¢+ 6 + ¢ =ddsinbsiny+ dcos P
w2 =y + 0+ = dsin Gcos y — dsin ¥ (11.102)
euﬂawu+®w+.wu Ha._VOOmm.T G

These relations will. be of use later in expressing the components of the angular
momentum in the body coordinate system.
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exampLe EEEDD s —————

Using the Eulerian angles, find the transformation that moves the original
xj-axis to the x3-x3 plane halfway between x; and x4 and moves x5 perpendic-
ular to the x3-x3 plane (Figure 11-8).

Solution: The key to transformations using Eulerian angles is the second rotation
about the line of nodes, because this single rotation must move x3 to x;. From the
statement of the problem, x; must be in the x3-x plane, rotated 45° from x4. The
first rotation must move xj to xj to have the correct position to rotaté xj = x5 to

L4

X3 = X3

FIGURE 11-8

In this case, x3 = x3 is rotated § = 45° about the original x; = x}-axis so that
¢ =0 and

Ag=1 (11.103)
1 0 0
=00 12 142 (11.104)
0 -1/V2 1/V2
The last rotation, i = 90°, moves x{ = x] = x7 to x; to the position desired in the
original x;—x3 plane.
010 _
Ay,=(-1 00 © 0 (11.105)
0 01
The transformation matrix A is A = AyAghy = AyAg
0 1 0\/1

0 0
A=[-1 0 0 1/vV2 12
0 0 1 w\rg\m 1/V2
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0 1/V2 1/\V2

A=| -1 0 0
0 -1/V2 1/V2

ttion comparison between the x- and x}-axes shows that A represents a single
on describing the transformation.

(11.106)

B EULER’S EQUATIONS FOR A RIGID BODY

s first consider the force-free motion of a rigid body. In such a case, the poten-
nergy U vanishes and the Lagrangian L becomes identical with the rotational
ic energy T.* If we choose the x-axes to correspond to the principal axes of
iody, then from Equation 11.35 we have

T=12 Lot (11.107)

e choose the Eulerian angles as the generalized coordinates, then Lagrange’s
tion for the coordinate i is

i S . (11.108)

:h can be expressed as

prp S S, o (11.109)
Tow op dt’T doy Y
¢ differentiate the components of o (Equation 11.102) with respect to ¥ and
/e have

Mlaﬂu Gsin fcos P — fsin ¥ = @
%em T . A
m|en —¢sinfsin g — Bcos = —w (11.110)
me
; —=0
) a
dwy _doy _ o
o oY (11.111)
i
PR

:cause the motion is force free, the translational kinetic energy is unimportant for our puIposes here.
can always transform to a coordinate system in which the center of mass of the body is at rest.)
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From Equation 11.107, we also have

L (11.112)

Equation 11.109 therefore becomes

d
hwws + Lw(—w) — H»«mem =0

or
AN._. = Nnveweu = &uavw =0 AHH.HHWV

Because the designation of any particular principal axis as the xs-axis is
entirely arbitrary, Equation 11.113 can be permuted to obtain relations for @;
and @,: . '

(fa — B)waws — Lo, =0
Qu - N_.veunc_. - Nnnon =0 AHH.HHAQ
(h — )wyw; — Loz =0

Equations 11.114 are called Euler’s equations for force-free motion.* It must be
noted that, although Equation 11.113 for @5 is indeed the Lagrange equation for
the coordinate ¢, the Euler equations for @, and @, are not the Lagrange equations
for 6 and ¢.

To obtain Euler’s equations for motion in a force field, we may start with the

fundamental relation (see Equation 2.83) for the torque N:
dL ,
7 " =N (11.115)

where the designation “fixed” has been explicitly appended to L because this rela-
tion is derived from Newton’s equation and is therefore valid only in an inertial
frame of reference. From Equation 10.12, we have

Ly () aEn (11.116)
dt [ ixeq at [ pody
or
dL
—_ +oXL=N (11.117)
dt o

The component of this equation along the xz-axis (note that this is a body axis) is

Ly + wiLy — woLy = N, ; (11.118)

v

* Leonard Euler, 1758.
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But because we have chosen the Xraxes to coincide with the principal axes of the
body, we have, from Equation 11.34,
L; = Loy,

s0 that

By = (I} — )ww, = N; (11.119)
By permuting the subscripts, én. can write all three components of N:

Loy = (I = B)wws = Ny

Loy = (I — I)wsw;, =N, _ (11.120)

Bz = (I — L)ww, = N,

Using the permutation symbol, we can write, in general

Ut = Doy — X Ty — Ztm.% =0 (11.121)
ko

Equations 11.120 and 11.121 are the désired Euler equations for the motion of a
rigid body in a force field. !

The motion of a rigid body depends on the structure of the body only through
the three numbers f;, I, and I;—that is, the principal moments of inertia. Thus,
any two bodies with the same principal moments move in exactly the same manner,
regardless of the fact that they may have quite different shapes. (However, effects
such as frictional retardation may depend on the shape of a body.) The simplest
geometrical shape that a body having three given principal moments may possess
is a homogeneous ellipsoid. The motion of any nigid body can therefore be rep-
resented by the motion of the equivalent ellipsoid.* The treatment of rigid-body
dynamics from this point of view was originated by Poinsot in 1834. The Poinsot
construction is sometimes useful for depicting the motion of a rigid body
geometrically."

EXAMPLE e ................................ R e

Consider the dumbbell of Section 11.3. Find the angular momentum of the
system and the torque required to maintain the motion shown in Figures
11-2 and 11-9. ,

Solution: Let [r;| = |ry| = b. Let the body fixed coordinate system have its origin
at O and the symmetry axis x; be along the weightless shaft toward m;,.

* The momental ellipsoid was introduced by the French ,Bmﬁnamnnmg Baron Augustin Louis Cauchy
(1789-1857) in 1827.

" Sce, for example, Goldstein (Go80, p. 205).
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E;

FIGURE 11-39

L= M Moo X V, (11.122)

Because L is perpendicular to the shaft and I, rotates around ¢ as the shaft rotates,
let e, be along L:

L=1Lge, (11.123)
If @ is the angle between and the shaft, the components of w are
w; =0
W, = @sin o (11.124)

W3 = wcos o

?a@ﬂ.n&@&ﬁ%.ﬁo aran.mbaa?mba&m principal moments of inertia are, from
Equation 11.13a, .

11 = (my + my)b?

I = (my + mp)b? (11.125)
L=0
Combining Equations 11.124 and 11.125
Li=ho;=0
L= Loy 2> (my + m)bw sin o (11.126)
Ly = hw; =0

which agrees with Equation 11.123.
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Using Euler’s equations Ame._mmm: 11.120) and @ = 0, the torque components These are coupled equations of familiar form, and we can effect a solution by mul-
gk tiplying the second equation by i and adding to the first:
2_. = |h§: + év@MSN sin o cos o Anm:. + nn.CNu = «bhew + Hemv =0 ﬁHH-Hmuv
Na=0 (11.127) If we define
Ne=0 . = @ + iwy (11.134)
=
The torque required to maintain the motion if & = 0 is directed along the x,-axis. then
e e e e e = f—ifln=20 (11.135)
with solution*
11.9 FORCE-FREE MOTION OF A SYMMETRIC TOP n(0) = A2t (11.136)
If we consider a symmetric top, that is, a'rigid body with I; = L, # I, then the Thus, _
force-free Euler equations (Equation 11.114) become
e Wy + iwy = A cos £2¢ + iA sin ¢ (11.137)
I = Bwaws — Lo =0

, and therefore
ANw = N._.ueweu. = NHB.GN =0 f AHH-HNWV

@y () = A cos 0t (11.138)

(1) = A sin 2t
Because w; = constant, we note that the magnitude of w is also constant:

lo| = @ = Vof + w3 + w2 = VA2 + ®3 = constant (11.139)

Equations 11.138 are the parametric equations of a circle, so the projection of the
vector w (which is of constant magnitude) onto the x;-x, plane describes a circle
with time (Figure 11-10).

The x3-axis is the symmetry axis of the body, so we find that the angular veloc-
ity vector w revolves or precesses about the body x3-axis with a constant angular
frequency £2. Thus, to an observer in the body coordinate system, e traces out a
cone around the body symmetry axis, called the body cone,

Because we are considering force-free motion, the angular-momentum vector
L is stationary in the fixed coordinate system and is constant in time. An additional
constant of the motion for the force-free case is the kinetic energy, or in particular,
because the body’s center of mass is fixed, the rotational kinetic energy is constant:

Nmaww =0

where I, has been substituted for I,. Because for force-free motion the center
of mass of the body is either at rest or in uniform motion with respect to the fixed
or inertial frame of reference, we can, without loss of generality, specify that the
body’s center of mass is at rest and located at the origin of the fixed coordinate
system. We consider the case in which the angular velocity vector « does not lie
along a principal axis of the body, otherwise, the motion is trivial,

The first result for the motion follows from the third part of Equations 11.128,
&m = O.. or ' t

ws3(f) = const. (11.129)
The first two parts of Equation 11.128 can be written as

L—1I
o Iﬂmb Heuven

=1
9 Aub Heuvep

Because the terms in the parentheses are identical and composed of constants, we
may define j

(11.130)

Il

o= WE - L = constant (11.140)

But we have L = constant, so @ must move such that its projection on the sta-
~ tionary angular-momentum vector is constant. Thus, o precesses around and makes

L-1 a constant angle with the vector L. In such a case, L, , and the x3- (body) axis
0= I @3 G,,H.Hub,,. (i.e., the unit vector e;) all lic in a plane. We can show this by proving that
so that \
@ + ,DEN ={ In general, the constant coefficient is complex, so we should properly write A exp(i8). For simplicity,
. 0 ‘however, we set the phase 8 equal to zero; this can always be done by choosing an appropriate instant
@2 = o) =0

‘tocall t = 0.
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%3

Eu 3

FIGURE 11-10

L - (o X e;) = 0. First, ® X e3 = w,e; — wye,. If we take EW scalar Eon:wﬂ Mm
this result with L, we have L * (@ X e;3) = ,:.S_en - Hnnw_em = o?gmm_wm@o moH..
I, for the symmetric top. Therefore, if we designate &a Xx3-axis in Mu\ xeu Soor
dinate system to coincide with L, then to an observer in the fixed sys M.rn b iy
out a cone around the fixed xj-axis, omunn._. the space cone. The m:,“s ol e
described (Figure 11-11) by one cone rolling on mc.oEm_.v such EN_H o Wno-mxna
around the x3-axis in the body system and around the x3-axis (or L) in the sp

system. o
g The rate at which « precesses around the body symmetry axis is given by

Equation 11.131:
Nm = HH

bn%»&

FIGURE 11-11

e
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IfI; = I, then 2 becomes very small compared with w,. The Earth is slightly
flattened near the poles,* 5o its shape can be approximated by an oblate spheroid
with [y = [, but with I > [, If the Earth is considered to be a rigid body, then
the moments /; and Iy are such that 2 = @3/300. Because the period of the Earth’s
rotation is 2w/ = ] day, and because w; = w, the period predicted for the pre-
cession of the axis of rotation is 1/42 = 300 days. The observed precession has
an irregular period about 50% greater than that predicted on the basis of this simple
theory; the deviation is ascribed to the facts that (1) the Earth is not a rigid body

order deformation and actually resembles a: flattened pear.

The Earth’s equatorial “bulge” together with the fact that the Earth’s rotational
axis is inclined at an angle of approximately 23.5° to the plane of the Earth’s orbit
around the sun (the plane of the ecliptic) produces a gravitationa] torque (caused
by: both the sun and the moon), which produces a slow precession of the Earth’s
axis. The period of this precessional motion is approximately 26,000 years. Thus,
in different epochs, different stars become the “pole star.”*

Examrre QEERRD - R . ——————- —————

Show that the motion depicted in Figure 11-11 actually refers to the motion of
a prolate object such as an elongated rod Iy > I), whereas for a flat disk
(I3 > I) the space cone would be inside the body cone rather than outside.

Solution: If L is along x3, then the Euler angle 6 (between the x,- and X5-axes)
is the angle between L and the X3-axis. At a given instant, we align e, to be in the
plane defined by L, w, and €3. Then, at this same instant,

Li=0
L, =Lsin @ (11.141)
Ly=Lcos@

Let « be the angle between o and the x;-axis. Then, at this same instant, we have
w; =0
W = wsin @ (11.142)
Wy = rnom @

_—

* The flattening at the poles was shown by Newton 1o be caused by the Earth’s rotation: the resulting
precessional motion was first calculate by Euler.

* This precession of the equinoxes fvas apparently discovered by the Babylonian astronomer Cidenas
in about 343 B.c.
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We can also determine the components of L from Equation 11.34:
hu = .N._.e_ =0
Ly =Lw, = Lwsina (11.143)

Ly = Liws = Lwcos a
We can obtain the ratio L,/L; from Equations 11.141 and 11.143,

m =tan @ = WHNE a (11.144)
50 we have
Prolate spheroid
L >5, 0>« (11.145a)
Oblate spheroid
) L>IL, a>0 (11.145b)

The two cases are shown in Figure 11-12. From Equation 11.131, we determine
that {2 and w; have the same sign if I; > I; but have opposite signs if I > Is.
Thus, the sense of precession is opposite for the two cases. This fact and Equation
11.145 can be reconciled only if the space cone is outside the body cone for the
prolate case but inside the body cone for the oblate case. The angular velocity @
defines both cones as it rotates about L (space cone) and the symmetry axis x3
(body cone). The line of contact between the space and body cones is the instan-
taneous axis of rotation (along ). At any instant, this axis is at rest, so that the
body cone rolls around the space cone without slipping. In both cases, the space
cone is fixed, because L is constant.

Prolate, I, > I ) Oblate, I, > I,
2, w, have opposite signs. Q, w, have same sign.

@ , ®)
FIGURE 11-12
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EXAMPLE e ............. e e S

With what angular velocity does the symmetry axis (x;) and @ rotate about
the fixed angular momentum L?

Solution: Because e3, w, and L are in the same plane, e; and « precess about L

with the same angular velocity. In Section 11.7 we leamed that ¢ is the-angular
velocity along the xj-axis. If we use the same instant of time considered in the

previous example (when e, was in the plane of es, w, and L), then the Euler angle

tr = 0, and from Equation 11.102

” Wy = ¢psinf
,m...aA

)
sin 6
Substituting for w, from Equation 11.142, we have

b= (11.146)

. wsing
¢=—
sin 6

(11.147)

We can rewrite ¢ by substituting sin & from Equation 11.143 and sin 8 from Equa-
tion 11.141: .

b=w——== (11.148)

11.10 MOTION OF A SYMMETRIC TOP
WITH ONE POINT FIXED _

Consider a symmetric top with tip held fixed* rotating in a gravitational field. In
our previous development, we have been able to separate the kinetic energy into
translational and rotational parts by taking the body’s center of mass to be the origin
of the rotating or body coordinate system. Alternatively, if we can choose the ori-
gins of the fixed and the body coordinate systems to coincide, then the translational

~ kinetic energy vanishes, because V = R = 0. Such a choice is quite convenient

for discussing the top, because the stationary tip may then be taken as the origin
for both coordinate systems. Figure 11-13 shows the Euler angles for this situation.
The x3- (fixed) axis sorresponds to the vertical, and we choose the x3- (body) axis

to be the symmetry axis of the top. The distance from the fixed tip to the center
of mass is A, and the mass of the top is M.

* This problem was first solved vnnﬂm_._ by Ligrange in Mécanique analytique.
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Xy o N '
' Line of nodes

FIGURE 11-13

Because we have a symmetric top, the principal moments of inertia about the
x;- and xp-axes:are equal: I; = I, We assume I3 # I;. The kinetic energy is then
given by .

T=1: M L} = Lo + 03) + 3] (11.149)
According to Equation 11.102, we have
w? = (¢ sin 6 sin ¢ + 6 cos ¥)*
= & sin®8 sin®y + 20 sin 0 sin § cos ¥ + 67 cos’y
(¢ sin 6 cos i — Bsin Sm
&2 sin6 cosy — 28 sin 6 sin Y cos f + 62 sin®Y

w4

so that
o} + 0} = ¢*sin®0 + 67 (11.150a)
| and
Wf = ($cos 6+ §)° (11.150b)
Therefore,
T =3I (¢ sin®6 + 6%) + L cos 6 + 9)? (11.151)

Because the potential energy is Mgh cos 6, the Lagrangian becomes

L =11, (¢*sin*6 + 6%) + 11(d cos 6 + §)? — Mghcos & (11.152)
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The Lagrangian is cyclic in both the ¢- and y~coordinates. The momenta conjugate
to these coordinates are therefore constants of the motion:
Ps= m_ = (I, sin*6 + I5 cos*0) ¢ + I5 frcos 6 = constant  (11.153)
aL .
Py = m& = I; (¢ + ¢ cos 8) = constant (11.154)
Because the cyclic coordinates are angles, the conjugate momenta are angular
momenta—the angular momenta along the axes for which ¢ and i are the rotation
angles, that is, the x3- (or vertical) axis and the x3- (or body symmetry) axis, respec-
tively. We note that this result is ensured by the comstruction shown in Figure
11-13, because the gravitational torque is directed along the line of nodes. Hence,
the torque can have no component along either the x3- or the x;-axis, both of which
are perpendicular to the line of nodes. Thus, the angular momenta along these axes
are constants of the motion.
Equations 11.153 and 11.154 can be solved for ¢ and ¢ in terms of §. From
Equation 11.154, we can write

b= E (11.155)
3

and substituting this result into Equation 11.153, we find

(I sin®6 + I; cos*8) & + (p,, — Iz cos B)cos 6 = py

or
(I sin®8)¢ + p,cos 6= pgy
so that
.  Dg— pycos @
— - ma
¢ I, sin6 G155
Using this expression for ¢ in Equation 11.155, we have
. - [
e Py _ (g — Py cos 6) cos 6 (11.157)

I I, 5in%0

By hypothesis, the system we are considering is conservative; we therefore
have the further property that the total energy is a constant of the motion:

E = LI, (¢*sin*0 + ) + 31;03 + Mghcos § = constant ~ (11.158)

Using the expression for ws,(e.g., see Equation 11.102), we note that Equation
11.154 can be written as

/~ py=Iw; = constant (11.1592)
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or

2
Lok = ww = constant (11.159b)

Therefore, not only is E a constant of the motion, but so is E — fmew.. we let this
quantity be E': ‘

E'=E- 35} = L1, ($% sin? 6+ %) + Mgh cos 6 = constant (11.160)

Substituting into this equation the expression for ¢ (Equation 11.156), we have

2
y _1y 2, o= PyCOS O "
E mb,m dus 20, 5io%6 Mgh cos 8 (11.161)
which we can write as
E=in 8+ V(0) (11.162)
where V(6) is an “effective potential” given by
2,
UQ —pyeosd] + Mgh 16
V(6) Fﬁp e Mzgh cos 0 G,H._ 3)

Equation 11.162 can be solved to yield #(6):

do
6= ‘_» 11.164

0= [NV - Vo) (168
This integral can (formally, at least) be inverted to obtain (z), which, in turn, can
be substituted into Equations 11.156 and 11.157 to vield ¢(7) and ¥(f). Because
the Euler angles 6, ¢, i completely specify the orientation of the top, the results
for 6(z), ¢(2), and () constitute a complete solution for the problem. It should be
clear that such a procedure is complicated and not very illuminating. But we can
obtain some qualitative features of the motion by examining the preceding equa-
tions in a manner analogous to that used for treating the motion of a particle ina
central-force field (see Section 8.6).

Figure 11-14 shows the form of the effective potential V(6) in the range 0=
6 = m, which clearly is the physically limited region for 6. This energy diagram
indicates that for any general values of E' (e.g., the value represented by Ep) the
motion is limited by two extreme values of §—that is, 6; and @5, which correspond
to the turning points of the central-force problem and are roots of the denominator
in Equation 11.164. Thus we find that the inclination of the rotating top is, in gen-
eral, confined to the region 6, = 8 = 0>. For the case that E' = E5 = Viin 018
limited to the single value 6, and the motion is a steady precession at a fixed angle
of inclination. Such motion is similar to the occurrence of circular orbits in the
central-force problem.
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H

FIGURE 11-14

o, The value of 6, can be obtained by setting the derivative of V(6) equal to zero.
us,

A4 _ —c0s 6o(pg — Py COS 80)% + py sin® 8o(py — Py €08 )
60 | g6 1, sin® 6
— Mghsin 8, =0
(11.165)
- If we define
B=py— pycos by (11.166)

then Equation 11.165 becomes

(cos o) B% — (py sin®6p) B + (Mghl; sin6o) = 0 (11.167)
This is a quadratic in 8 and can be solved with the result

2
_ Py Sin“ _ 4Mghl, cos 6y
B=S % 1£ /1 = (11.168)

- Because 3 must be a real quantity, the radicand in Equation 11.168 must be pos-

itive. If 6, < w/2, we have

/ PL = 4Mghl, cos 6, (11.169)
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But from Equation 11.159a, p, = L;ws; thus,

w0y = w \/Mghl, cos 6, (11.170)
3
We therefore conclude that a steady precession can occur at the mxom angle of w._o:-
nation 6 only if the angular velocity of spin is larger than the limiting value given
by Eguation 11.170. .
From Equation 11.156, we note that we can write (for 8 = o)

. __ B
o = 1, sin®8,

We therefore have two possible values of the precessional angular velocity ¢, one
for each of the values of B given.by Equation 11.168:

(11.171)

(b)
FIGURE 11-15

@wohi —> Fast precession described by the projection of the body

system is shown in Figure 11-15a.
If ¢ does change sign between the limiting values of 6, the precessional angular
velocity must have Opposite signs at § = 6, and § = 63. Thus, the nutational-

precessional motion produces the looping motion of the Symmetry axis depicted in
Figure 11-15b.

Finally, if the values of Py and p,, are such that

Symmetry axis on a unit sphere in the fixed
and

$o(—y = Slow precession

i i dicand of Equation
If ws (or p,) is large (a fast top), then the second ﬁnu..ﬁ the ra
11.168 is small, and we may expand the radical. Retaining only the first nonvan-
ishing term in each case, we find

(Pg = Py c0s O)|gmg, = 0, (11.173)
. Lo y
. Poy = I MoM % o then
¢ Glome =0, Bpug =0 (11.174)
p Mgk
oy = ly0;

Figure 11-15¢ shows the resulting cusplike motion. It is Just this case that corre-
sponds to the usual method of starting a top. First, the top is spun around its axis,
then it is given a certain ipitial tilt and released. Thus, initial conditions are § =
6 and =0 = ¢. Because the first motion of the top is to begin to fall in the
gravitational field, the conditions are exactly those of Figure 11-15¢, and the cusp-
like motion ensues. Figures 11-15a and 11-15b correspond to the motion in the

event that there is an initial angular velocity ¢ either in the direction of Or opposite
to the direction of precession.

It is the slower of the two possible precessional angular velocities, ¢y, that is
usually observed. . .
HWm preceding results apply if 6y < a/2; but if* m.o V /2, 54 .H.mnﬁmbn_ in
Equation 11.168 is always positive and there is no limiting condition on w;.
Because the radical is greater than unity in such a case, the values of ¢, for ﬁ..mmﬂ
and slow precession have opposite signs; that is, for 6, > 7/2, the .H.BH precession
is in the same direction as that for 6, < /2, but the slow precession takes place
in the opposite sense. ]
QmOnﬁ%E general case, in which 6 < 8 < 0,, mn.mnwc”oa 11.156 Fa.poﬁom that
¢ may or may not change sign as § varies between its limits—depending on the
values of py and p,. If ¢ does not change sign, the top precesses Bn.unonou.poaq
around the x3-axis (see Figure 11-13), and the x;- (or symmetry) axis oscillates
between 6§ = 6, and § = 6,. This phenomenon is called nutation; the path

11.11 STABILITY OF RIGID-BODY ROTATIONS

We now consider a rigid body undergoing force-free rotation around one of its
principal axes and inquire whether such motion is stable. “Stability” here means,

as before (see Section 8.10), that if a small perturbation is applied to the
the motion will either return
.about it.

. We choose for Mﬁann\&mnummmon a general rigid body for which all the principal

‘moments of inertia distinct, and we label them such that I; > I, > I,. We let
the body axes coincide with the principal axes, and we start with the body rotating

system,
to its former mode or will perform small oscillations

i i its . Such Bonn,_u is possible,
*If B > m/2, the fixed tip of the top 18 at a position above the center of mass s ‘
for nstm_a. with a gyroscopic top whose tip is actually a ball and rests in a cup that is fixed atop a
pedestal.
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around the x;-axis—that is, around the principal axis associated with the moment
of inertia I;. Then,

= we (11.175)
If we apply a small perturbation, the angular velocity vector assumes _En form
w = we, + Mpﬁu + es } AHH-HQGV

where A and w are small quantities and correspond to the parameters used @aﬁ.
ously in other perturbation expansions. (A and u are sufficiently Eﬂm: so that their
product can be neglected compared with all other quantities of interest to the
discussion.)

The Euler equations (see Equation 11.114) become

, (I~ B — Ly = 0
(I = Ipw, = LA =0 (11.177)
Iy = DAy — I =0

Because Ay = 0, the first of these equations requires @; =0, or w; = constant.
Solving the other two equations for A and f, we find

: Nm|~.“_

A= Suv M (11.178)
L

o= :M|~p§ A . (11.179)
u

where the terms in parentheses are both constants. These are coupled equations, but.
they cannot be solved by the method used in Section 11.9, because the constants

in the two equations are different. The solution can be obtained by first differe;
tiating the equation for A: L

(I, — L), IE EARY H_,_Q
Lls & o500 .

A+

The solution to this equation is I
Ap) = AePa + BeTiat

where
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and where the subscripts 1 and A indicate that we are considering the solution for
A when the rotation is around the x;-axis.

By hypothesis, I}, < I; and I} < I, 50 {2, is real. The solution for A(?) there-
fore represents oscillatory motion with a frequency {2;,. We can similarly inves-
tigate u(r), with the result that £2,,, = 2, = £2,. Thus, the small perturbations
introduced by forcing small x,- and x;-components on « do not increase with time
but oscillate around the equilibrium values A = 0 and w = 0. Consequently, the
rotation around the x,-axis is stable.

If we consider rotations around the x,- and X3-axes, we can obtain expressions
for £2, and {2, from Equation 11.183 by permutation:

= B — 1)

= 184
2, = w I, (11.184a)
0= v, |/ 2=~ 1) (11.184b)
L,
. 0y = o || REB 1) (11.184¢)

L
But because [; < I, < I, we have

b_.. .Dw. H.mm.f bu HB_NWSNQ

i Thus, when the rotation takes place around either the X1~ Or x3-axes, the perturbation
produces oscillatory motion and the rotation is stable. When the rotation takes place
' around x,, however, the fact that (2, is imaginary results in the perturbation increas-
ng with time without limit; such motion is unstable. o
Because we have assumed a completely arbitrary rigid body for this discussion,
_conclude that rotation around the principal axis corresponding to either the
.mn%mﬁm"., or smallest moment of inertia is stable and that rotation around the principal
corresponding to the intermediate moment is unstable. We can demonstrate this
ct with, say, a book (kept closed by tape or a rubber band). If we toss the book
he air with an angular velocity around one of the principal axes, the motion
15 unstable for rotation around the intermediate axis and stable for the other two

If ts 1,o_ m_.Em moments of inertia are equal (I; = I, say), then the coefficient
in Equation 11.179 vanishes, and we have ji = 0 or #(r) = constant. Equation
A can therefore be integrated to yield

g A®)y=C+Dr (11.185)

.nﬁnan_uwn%. increases linearly with the time; the motion around the X1-axis
ereiore. unstable. We find a similar result for motion around the x,-axis. Sta-
>Xists:only oH_,En,auWE.m. independent of whether 73 is greater or less than
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A good example of the stability of rotating objects is seen by the satellites put
into space by the space shuttle orbiter. When the satellites are ejected from the
payload bay, they are normally spinning in a stable configuration. In May 1992,
when the astronauts attempted to grab in space the Intelsat satellite to attach a
rocket that would insert it into geosynchromous orbit, the spinning satellite was
slowed down and stopped before the astronaut attempted to attach a grappling fix-
ture to bring it into the payload bay. After each futile attempt, when the grappling
fixture failed, the satellite tumbled even more. After each of two unsuccessful days
of trying to attach the grappling fixture, the astronauts had to abort their attempts
because of the increased tumbling. Ground controllers would then require a few
hours to restabilize the satellite using jet thrusters. The satellite would be left in a
stable configuration of spinning slowly about its cyclindrical symmetry axis (a prin-
cipal axis). Finally, on the third day, three astronauts went outside the orbiter,
grabbed the slightly rotating satellite, stopped it, and put it into the payload bay
where the rocket skirt was attached. The Intelsat satellite was finally successfully
placed into orbit in time to broadeast the 1992 Barcelona Olympic surnmer games.

PR OBILEMS

11-1. Calculate the moments of inertia I, I, and I, for a homogeneous sphere of radius
R and mass M. (Choose the origin at the center of the sphere.)

11-2. Calculate the moments of inertia I), I, and J; for a homogeneous cone of mass M
whose height is & and whose base has a radius R. Choose the x3-axis along the axis of
symmetry of the cone. Choose the origin at the apex of the cone, and calculate the elements
of the inertia tensor. Then make a transformation such that the center of mass of the cone
becomes the origin, and find the principal moments of inertia.

11-3. Calculate the moments of inertia Iy, I, and J; for a homogeneous ellipsoid of mass
M with axes’ lengths 2a > 2b > 2c.

11-4. Consider 2 thin rod of length ! and mass m pivoted about one end. Calculate the
moment of inertia. Find the point at which, if all the mass were concentrated, the moment
of inertia about the pivot axis would be the same as the real moment of inertia. The distance
from this point to the pivot is called the radius of gyration.

11-5. (a) Find the height at which a billiard ball should be struck so that it will roll with
no initial slipping. (b) Calculate the optimum height of the rail of a billiard table. On what
basis is the calculation predicated?

11-6. Two spheres are of the same diameter and same mass, but one is solid and the other
is a hollow shell. Describe in detail a nondestructive experiment to determine which is solid
and which is hollow.

11-7. A homogeneous disk of radius R and mass M rolls without slipping on a horizontal
surface and is attracted to a point a distance d below the plane. If the force of attraction is
proporticnal to the distance from the disk’s center of mass to the force center, find the fre-
quency of oscillations around the position of equilibrium.

PROBLEMS --- amm

11-8. A door is constructed of a thin homogeneous slab of material; it has a width of 1 m.
If the door is opened through 90°, it is found that on release it closes itself in 2 5. Assume
that the hinges are frictionless, and show that the line of hinges must make an angle of
approximately 3° with the vertical.

11-9. A homogeneous slab of thickness a is placed atop a fixed cylinder of radius R whose
axis is horizontal. Show that the condition for stable equilibrium of the slab, assuming no
slipping, is R > a/2. What is the frequency of small oscillations? Sketch the potential energy
U as a function of the angular displacement 6. Show that there is a minimum at § = O for
R > a/2 but not for R < a/2.

11-10. A solid sphere of mass M and radius R rotates freely in space with an angular veloc-
ity w about a fixed diameter. A particle of mass n, initially at one pole, moves with a con-
stant velocity v along a great circle of the sphere. Show that, when the particle has reached
the other pole, the rotation of the sphere will have been retarded by an angle

_ 2M
“= ew? 2M + msv

where T is the total time required for the particle to move from one pole to the other.

11-11. A homogeneous cube, cach edge of which has a length /, is initially in a position
of unstable equilibrium with one edge in contact with a horizontal plane. The cube is then
given a small displacemént and allowed to fall. Show that the angular veloeity of the cube
when one face strikes the plane is given by

F=as02-1)
where A = 3/2 if the edge cannot slide on the plane and where A = .Hu\ 5 if sliding can
occur without friction.

11-12. Show that none of the principal moments of inertia can exceed the sum of the other
two.

11-13. A three-particle system consists of masses m; and coordinates (x;, x», x3) as follows:
m;=3m, (b,0,b)

ngy = L.E._ AW.. Wu IWV
my=2m, (—b,b,0)

Find the inertia tensor, principal axes, and principal moments of inertia.

11-14. Determine the principal axes and principal moments of inertia of a uniformly solid
hemisphere of radius b and mass m about its center of mass.

11-15. If a physical pendulum has the same period of oscillation when pivoted about either
of two points of unequal distances from the center of mass, show that the length of the simple
pendulum with the same period is equal to the separation of the pivot points. Such a physical
pendulum, called Kater’s reversible pendulum, at one time provided the most accurate way
(to about 1 part in 10%) to measure the acceleration of gravity.* Discuss the advantages of
Kater’s pendulum over a simple pendulum for such a purpose.

* First used w._. 1818 by Captain Henry Kdfer (1777-1835), but the method was apparently suggested
somewhat carlier by Bohnenberger. The'theory of Kater's pendulum was treated in detail by Friedrich
Wilhelm Bessel (1784-1846) in 1826.
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11-16. Consider the following inertia tensor:
,W§+$ HA-B) 0
={;4-8 ia+B 0

0 0 c

Perform a rotation of the coordinate system by an angle § about the x;-axis. Evaluate the
transformed tensor elements, and show that the choice § = m/4 renders the inertia tensor
diagonal with clements A, B, and C.

11-17. Consider a thin homogeneous plate that lies in the x,—x; E..Sn. Show that the inertia
tensor takes the form

(-4 -C 0
m=1-c B 0
0 0 A+B

11-18. If, in the previous problem, the coordinate axes are rotated through an angle 6 about
the x;-axis, show that the new inertia tensor is

Al i 0
{=4-¢ B 0
0 0 A"+ B

where
= A cos”d — Csin 20 + B sin®6
B' = Asin®6 + Csin 26 + B cos®0

C'=Ccos20— Wﬁm — A)sin 26

and hence show that the x;- and x,-axes become principal axes if the angle of rotation is

=Ll (26
mlwnuu B-A

11-19. Consider a plane homogeneous plate of density o bounded by the logarithmic spiral
= ke®® and the radii @ = 0 and @ = . Obtain the inertia tensor for the origin at r = 0
if the plate lies in the x,—x, plane. Perform a rotation of the coordinate axes to obtain the

principal moments of inertia, and use the results of the previous problem to show that they
are

IL=pk'P(Q—R), E=pKPQ+R), B=L+5h

where

re—1 1+ 4a?
. @=——% R=V1+4
16(1 + 4% e

i 2a

11-20. A uniform rod of strength b stands vertically upright on a rough floor and then tips
over. What is the rod’s angular velocity when it hits the floor?

root for 6.

nmgmrmgw --=- 457

11-21. The proof represented by Equations 11.54-11.61 is Qﬁnnmmna onﬁ&wﬁn the sum-
mation convention. Rewrite this proof in matrix notation.

11-22. The trace of a tensor is defined as the sum of the diagonal elements;’

wfl} = Mf _

Show, by performing a similarity tranformation, that the trace is an invariant quantity. In
other words, show that

w{l} = t{l'}

where {I} is the tensor in one coordinate system and {I} is the tensor in a coordinate system
rotated with respect to the first system. Verify this result for the different forms of the inertia
tensor for a cube given in several examples in the text.

11-23. Show by the method used in the previous problem that the dererminant of the ele-

Eopﬁo:ﬁumoimwamnénmancmuﬁwgaﬁ»ﬁ:&maﬂqgmmo:ummou.<on@nzmﬂnm=_n
also for the case of the cube. :

11-24. Find the frequency of small oscillations for a thin homogeneous plate if the motion
takes place in the plane of the plate and if the plate has the shape of an equilateral triangle
and is suspended (a) from the midpoint of one side and (b) from one apex.

11-25. Consider a thin disk composed of two homogeneous halves connected along a diam-
eter of the disk. If one half has density p and the other has depsity 2p, find the expression

for the Lagrangian when the disk rolls without slipping along a horizontal surface. (The
rotation takes place in the plane of the disk.)

11-26. Obtain the components of the angular velocity vector o (see Equation ﬁ.Ho.mV
directly from the transformation matrix A (Equation 11,99).

+11-27. A symmetric body moves without the influence of forces or torques. Let x; be the

symmetry axis of the body and L be along x3. The angle between o and x; is a. Let w and
L initially be in the x,-x; plane. What is the angular velocity of the symmetry axis about
L in terms of 1, I, w, and a?

11-28. Show from Figure 11-7c that the components of o along the fixed (x}) axes are

’

)y

B cos ¢ + drsin 6sin ¢

’

w2

fsin ¢ — Wsin §cos ¢
=rcos O+ ¢

11-29. Investigate the motion of the symmetric top discussed in Section 11.10 for the case
in which the axis of rotation is vertical (i.c., the x3- and x;-axes coincide). Show that the
motion is either stable or unstable depending on whether the quantity 41; Mhg/[2w3 is less
than or greater than unity. Sketch the effective potential V() for the two cases, and point
out the features of these curves that determine whether the motion is stable. If the top is set
spinning in the stable configuration, what is the effect as friction gradually reduces the value
of w37 (This is the case of the “sleeping top.™)

11-30. Refer to the discussion of the symmetric top in Section 11.10. Investigate the equa-
tion for the turning points of the nutational motion by setting § = 0 in Equation 11.162.
Show that the resulting equation is a cubic in cos 8 and has two real roots and one imaginary

e
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11-31. Consider a thin homogeneous plate with principal momenta of inertia
I, along the principal axis x;
I, > I, along the principal axis x,
Iy=1 + I, along the principal axis x4

Let the origins of the x; and x} systems coincide and be located at the nnnﬁm_” of mass 0 of
the plate. At time ¢ = 0, the plate is set rotating in a force-free manner with an EmmEE.
velocity {2 about an axis inclined at an angle « from the plane of the Hp.s and woﬂg&o&mﬂ
to the xy-axis. If 1, /I, = cos _NR show that at time ¢ the angular velocity about the x;-axis
is

() = £ cos a tanh(£21 sin )

COUPLED
OSCILLATIONS

12.1 INTRODUCTION

In Chapter 3, we examined the motion of an oscillator subjected to an external
driving force. The discussion was limited to the case in which the driving force is
periodic; that is, the driver is itself a harmonic oscillator. We considered the action
of the driver on the oscillator, but we did not include the feedback effect of the
oscillator on the driver, In many instances, ignoring this effect is unimportant, but
if two (or many) oscillators are connected in such a way that energy can be trans-
ferred back and forth between (or among) them, the situation becomes the more
complicated case of ‘coupled oscillations.* Motion of this type can be quite com-
plex (the motion may not even be periodic), but we can always describe the motion

- of any oscillatory system in terms of normal coordinates, which have the property

that each oscillates with a single, well-defined frequency; that is, the normal coor-
dinates are constructed in such a way that no coupling occurs among them, even
though there is coupling among the ordinary (rectangular) coordinates describing
the positions of particles. Initial conditions can always be prescribed for the system
so that in the subsequent motion only one normal coordinate varies with time. In
this circumstance, we say that one of the normal modes of the system has been

*The general theory of the oscillatory motion of a system of particles with a finite number of degrees
of freedom was formulated by Lagrange dring the period 1762-1765, but the pioneering work had
been done in 1753 by Daniel Bemnoulli 1700-1782).



