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Abstract We outline a global approach to scattering theory in one dimension that
allows for the description of a large class of scattering systems and their P-, T -,
and PT -symmetries. In particular, we review various relevant concepts such as
Jost solutions, transfer and scattering matrices, reciprocity principle, unidirectional
reflection and invisibility, and spectral singularities. We discuss in some detail the
mathematical conditions that imply or forbid reciprocal transmission, reciprocal
reflection, and the presence of spectral singularities and their time-reversal. We also
derive generalized unitarity relations for time-reversal-invariant and PT -symmetric
scattering systems, and explore the consequences of breaking them. The results
reported here apply to the scattering systems defined by a real or complex local
potential as well as those determined by energy-dependent potentials, nonlocal
potentials, and general point interactions.

1 Basic Setup for Elastic Scattering in One Dimension

The theory of the scattering of waves by obstacles or the interactions modelling
them rests on the assumption that the strength of the interaction diminishes at large
distances, so that in the vicinity of the source and detectors the wave can be safely
approximated by a plane wave. A consistent implementation of this assumption
requires the existence of solutions of the relevant wave equation that tend to plane
waves at spatial infinities. For a time-harmonic scalar wave, e−iωtψ(x), propagating
in one dimension, this requirement takes the form of the following asymptotic
boundary conditions:
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76 A. Mostafazadeh

ψ(x) →
{

A−(k)eikx + B−(k)e−ikx for x → −∞,

A+(k)eikx + B+(k)e−ikx for x → +∞,
(1)

where A±(k) and B±(k) are complex-valued functions of the wavenumber k, which
we take to be a positive real variable unless otherwise is clear. The factors eikx and
e−ikx appearing in (1) are related to the solutions, ei(kx−ωt) and e−i(kx+ωt), of the
wave equation in the absence of the interaction. They represent the right- and left-
going waves, respectively.

As a principal example, consider the scattering phenomenon described by the
Schrödinger equation,

−ψ ′′(x) + v(x)ψ = k2ψ(x), (2)

where v(x) is a real or complex interaction potential. The existence of the solutions
of this equation that satisfy (1) restricts the rate at which |v(x)| decays to zero as
x → ±∞. We can also consider the more general situations where the potential is
energy-dependent. For example consider the Helmholtz equation,

ψ ′′(x) + k2ε̂(x, k)ψ(x) = 0, (3)

which describes the interaction of polarized electromagnetic waves having an
electric field of the form E0e

−iωtψ(x) pointing along the y-axis with an isotropic
nonmagnetic media represented by a real or complex relative permittivity profile
ε̂(x, k), [4]. We can express (3) in the form (2) provided that we identify v(x) with
the energy-dependent optical potential:

v(x, k) = k2[1 − ε̂(x, k)]. (4)

The scattering setup we have outlined above also applies for the scattering of
waves described by nonlocal and nonlinear Schrödinger equations [44, 53, 59, 65],

−ψ ′′(x) +
∫ ∞

−∞
V (x, x′)ψ(x′)dx′ = k2ψ(x), (5)

−ψ ′′(x) + V (x,ψ(x))ψ(x) = k2ψ(x), (6)

if the nonlocal and nonlinear potentials, V (x, x′) and V (x,ψ(x)) decay sufficiently
rapidly as x → ±∞ so that (5) and (6) admit solutions satisfying (1). This is clearly
the case for confined nonlocal and nonlinear interactions [8, 44], where

V (x, x′) = v(x)δ(x − x′) + F(x, x′)χ [a,b](x),

V (x, ψ(x)) = v(x) + F(x,ψ(x))χ [a,b](x),
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δ(x) stands for the Dirac delta function, F is a complex-valued function of a pair of
real or complex variables, [a, b] is a closed interval of real numbers,

χ [a,b](x) :=
{

1 for x ∈ [a, b],
0 for x /∈ [a, b],

and we use the symbol “:=” (respectively “=:”) to state that the right-hand
(respectively left-hand) side is the definition of the left-hand (respectively right-
hand.)

Another class of scattering problems that we can treat using our general
framework for scalar-wave scattering in one dimension is that of single- or multi-
center point interactions [41]. These correspond to scalar waves ψ(x) that satisfy

− ψ ′′(x) = k2ψ(x) for x ∈ R \ {c1, c2, · · · , cn},[
ψ(c+

j )

ψ ′(c+
j )

]
= Bj

[
ψ(c−

j )

ψ ′(c−
j )

]
for j ∈ {1, 2, · · · , n},

(7)

where c1, c2, · · · , cn are distinct real numbers representing the interaction centers,
for every function φ(x) the symbols φ(c−

j ) and φ(c+
j ) respectively denote the left

and right limit of φ(x) as x → cj , i.e., φ(c±
j ) := limx→c±

j
φ(x), and Bj are possibly

k-dependent 2×2 invertible matrices. The point interactions of this type may be used
to model electromagnetic interface conditions [50].

The best known example of a single-center point interaction is the delta-function
potential v(x) = z δ(x) with a coupling constant z. It corresponds to the choice:
n = 1, c1 = 0, and

B1 =
[

1 0
z 1

]
. (8)

In a scattering experiment, the incident wave is emitted by its source which is
located at one of the spatial infinities ±∞, and the scattered wave is received by
the detectors which are placed at one or both of these infinities. If the source is
located at −∞, the incident wave travels towards the region of the space where the
interaction has a sizable strength. A part of it passes through this region and reaches
the detector at +∞. The other part gets reflected and travels towards the detector
at −∞. As a result, the incident and transmitted waves are right-going while the
reflected wave is left-going. This scenario is described by a solution ψl(x) of the
wave equation that has the following asymptotic behavior.

ψl(x) →
{
N
[
eikx + rl (k) e−ikx

]
for x → −∞,

N tl (k) eikx for x → +∞,
(9)
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where N is the amplitude of the incident wave, and rl (k) and tl (k) are complex-
valued functions of k that are respectively called the left reflection and transmission
amplitudes. Similarly, we have the solution ψr(x) of the wave equation that
corresponds to the scattering of an incident wave that is emitted from a source
located at x = +∞. This satisfies

ψr(x) →
{

N tr (k) e−ikx for x → −∞,

N
[
e−ikx + rr (k) eikx

]
for x → +∞,

(10)

where rr (k) and tr (k) are respectively the right reflection and transmission
amplitudes.

Scattering experiments involve the measurement of the reflection and trans-
mission amplitudes, rl/r (k) and tl/r (k), or their modulus square, |rl/r (k)|2 and
|tl/r (k)|2, which are respectively called the left/right reflection and transmission
coefficients.1 By solving a scattering problem we mean the determination of rl/r (k)

and tl/r (k). We sometimes call these the “scattering data”.
If rl/r (k0) = 0 for some wavenumber k0 ∈ R

+, we say that the scatterer2

is reflectionless from the left/right or simply left/right-reflectionless at k = k0.
Similarly we call it left/right transparent at k = k0, if tl/r (k0) = 1. A scatterer
is invisible from the left or right if it is both reflectionless and transparent
from that direction. In this case we call it left/right-invisible. Unidirectional
reflectionlessness (respectively unidirectional invisibility) refers to situations where
a scatterer is reflectionless (respectively invisible) only from the left or right [25].
The reflectionlessness, transparency, and invisibility of a scatterer are said to be
broadband if they hold for a finite or infinite interval of positive real values of k.

If the wave equation is linear, we can scale ψl/r and work with ψ+/− :=
ψl/r/N tl/r . These satisfy:

ψ±(x) → e±ikx for x → ±∞,

ψ+(x) → 1

tl (k)
eikx + rl (k)

tl (k)
e−ikx for x → −∞,

ψ−(x) → rr (k)

tr (k)
eikx + 1

tr (k)
e−ikx for x → +∞,

(11)

and are called the Jost solutions. It turns out that the Schrödinger equation (2) admits
Jost solutions, if

∫∞
−∞

√
1 + x2 |v(x)|dx < ∞. This is equivalent to the Faddeev

condition:

1These are occasionally labelled by T l/r (k) and Rl/r (k), [44, 59]. Here we refrain from using this
notation, because some references use these symbols for the reflection and transmission amplitudes
and not their modulus squared [25].
2By a scatterer we mean the interaction causing the propagation of a wave differ from that of a
plane wave.
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∫ ∞

−∞
(1 + |x|)|v(x)|dx < ∞. (12)

Under this condition the Jost solutions exist not only for real and positive values
of k, but also for complex values of k belonging to the upper-half complex plane,
i.e., k ∈ {z ∈ C | Im(z) ≥ 0}. Furthermore, in this half-plane they are continuous
functions of k, [21].

Faddeev condition clearly holds for finite-range potentials which vanish outside
a finite interval (have a compact support), and exponentially decaying potentials
which satisfy

eμ±|x||v(x)| < ∞ for x → ±∞, (13)

for some μ± ∈ R
+. Notice that finite-range potentials fulfill this condition for all

μ± ∈ R
+. Therefore they share the properties of exponentially decaying potentials

that follow from (13).
In this article we use the term “scattering potential ” for real or complex-valued

potentials v(x) that satisfy the Faddeev condition (12).

2 Transfer Matrix

Consider a linear scalar wave equation that admits time-harmonic solutions
e−iωtψ(x) fulfilling the asymptotic boundary conditions (1). We can identify these
solutions by the pairs of column vectors:[

A−(k)

B−(k)

]
and

[
A+(k)

B+(k)

]
.

The 2 × 2 matrix M(k) that connects these is called the transfer matrix [63, 66]. By
definition, it satisfies

M(k)

[
A−(k)

B−(k)

]
=
[

A+(k)

B+(k)

]
. (14)

If we demand that the knowledge of the solution of the wave equation at either of
the spatial infinities, x → ±∞, determines it uniquely, M(k) must be invertible. In
what follows we assume that this is the case, i.e., det M(k) �= 0.3

We can express the entries of M(k) in terms of the reflection and transmis-
sion amplitudes by implementing (14) for the Jost solutions. This requires the

3In Sect. 4, we prove that this conditions holds for the scattering systems described by the
Schrödinger equation (2).
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identification of the coefficient functions A±(k) and B±(k) for ψ(x) = ψ±(x).
Comparing (1) and (11), we see that for ψ(x) = ψ+(x),

A− = 1

tl
, B− = rl

tl
, A+ = 1, B+ = 0. (15)

Here and in what follows we occasionally suppress the k-dependence of A±(k),
B±(k), rl/r (k), tl/r (k), M(k), and other relevant quantities for brevity. Similarly for
ψ(x) = ψ−(x), we have

A− = 0, B− = 1, A+ = rr

tr
, B+ = 1

tr
. (16)

Substituting (15) and (16) in (14) gives

1

tl
M
[

1
rl

]
=
[

1
0

]
, M

[
0
1

]
= 1

tr

[
rr

1

]
. (17)

The second of these equations implies

M12 = rr

tr
, M22 = 1

tr
. (18)

Using these relations in the first equation in (17), we find

M11 = tl − rlrr

tr
, M21 = −rl

tr
. (19)

In view of (18) and (19),

M = 1

tr

[
tltr − rlrr rr

−rl 1

]
. (20)

In particular,

det M = tl
tr

. (21)

We can also solve (18) and (19) for the reflection and transmission amplitudes in
terms of Mij . The result is

rl = −M21

M22
, tl = det M

M22
, rr = M12

M22
, tr = 1

M22
. (22)

Equations (20) and (22) show that the knowledge of the transfer matrix is equivalent
to solving the scattering problem. It is also instructive to make the k-dependence of
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the Jost solutions explicit and note that in light of (22) and (11) their asymptotic
expression takes the form

ψ±(k, x) → e±ikx for x → ±∞,

ψ+(k, x) → det M(k)−1
[
M22(k) eikx − M21(k) e−ikx

]
for x → −∞,

ψ−(k, x) → M12(k) eikx + M22(k) e−ikx for x → +∞.

(23)

These relations together with the assumption that det M(k) �= 0 show that as
functions of k the entries of the transfer matrix, Mij (k), have the same analytic
properties as the Jost solutions ψ±(k, x).

A simple consequence of (21) is that det M is a measure of the violation of
reciprocity in transmission; a scattering system has reciprocal transmission if and
only if det M(k) = 1 for all k ∈ R

+.
An example of a scattering system that has nonreciprocal transmission is a single-

center point interaction (7) that is defined by a matching matrix B1 with det B1 �= 1,
[41]. To see this, we set n = 1 and drop the subscript 1 in c1 and B1 in (7). Clearly
for x �= c, every solution of (7) has the form

ψ(x) = A±(k)eikx + B±(k)e−ikx for ± (x − c) > 0. (24)

We can use this expression to show that[
ψ(c±)

ψ ′(c±)

]
= Nc

[
A±
B±

]
, (25)

where

Nc(k) :=
[

eick e−ick

ikeick −ike−ick

]
. (26)

If we substitute (26) in (7), we can relate A+(k) and B+(k) to A−(k) and B−(k).
This gives (14) with the following formula for the transfer matrix of the system.

M = N−1
c B Nc. (27)

In particular det M = det B. Therefore, single-center point interactions that satisfy
det B �= 1 violate reciprocity in transmission. These are called anomalous point
interactions in [41], because they cannot be viewed as singular limits of sequences
of scattering potentials.

Next, consider a situation that the solutions ψ(x) of our linear wave equation
have also the form of a plane wave in a closed interval, [x1, x1 + ε], where x1 ∈ R

and ε ∈ R
+, i.e., there are coefficient functions A1(k) and B1(k) such that for all

x ∈ [x1, x1 + ε],
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ψ(x) = A1(k)eikx + B1(k)e−ikx . (28)

In the limit ε → 0 this is certainly true for any x1, because we can satisfy (28) for
x → x1 by setting

A1(k) = e−ikx

2

[
ψ(x1) + ψ ′(x1)

ik

]
, B1(k) = eikx

2

[
ψ(x1) − ψ ′(x1)

ik

]
. (29)

We can use x1 to disect the original scattering problem into two pieces. First, we
consider the case where ψ(x) solves the given wave equation for all x < x1 and
takes the form (28) for x ≥ x1. Then the choice (29) for A1(k) and B1(k) ensures
the continuity and differentiability of the resulting wave function, namely

ψ1(x) :=
{

ψ(x) for x ≤ x1,

A1(k)eikx + B1(k)e−ikx for x > x1,
(30)

at x = x1. We can therefore view ψ1(x) as the general solution of the wave equation
with the interaction terms missing for x > x1. Similarly, we introduce

ψ2(x) :=
{

A1(k)eikx + B1(k)e−ikx for x < x1,

ψ(x) for x ≥ x1,
(31)

and identify it with the general solution of the wave equation with the interaction
terms missing for x < x1. According to (1), (30), and (31),

ψ1(x) →
{

A−(k)eikx + B−(k)e−ikx for x → −∞,

A1(k)eikx + B1(k)e−ikx for x → +∞,
(32)

ψ2(x) →
{

A1(k)eikx + B1(k)e−ikx for x → −∞,

A+(k)eikx + B+(k)e−ikx for x → +∞.
(33)

We can use these relations together with the definition of the transfer matrix to
introduce the transfer matrices Mj for ψj (x). These fulfil

M1

[
A−
B−

]
=
[

A1

B1

]
, M2

[
A1

B1

]
=
[

A+
B+

]
. (34)

Comparing these equations with (14), we see that the transfer matrix of the original
wave equation is given by

M = M2M1. (35)

Now, consider dividing the set of real numbers into n + 1 intervals:
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I1 := (−∞, a1], I2 := [a1, a2], I3 := [a2, a3], · · · , In := [an−1, an],
In+1 := [an,∞),

and let Mj be the transfer matrix for the scattering of a scalar wave with interactions
confined to Ij . Then a repeated use of the argument leading to (35) shows that the
transfer matrix for the original scattering problem is given by

M = Mn+1MnMn−1 · · · M1. (36)

This property, which is known as the composition rule for the transfer matrices,
allows for reducing the scattering problem with interactions taking place in an
arbitrary region of space to simpler scattering problems where the interaction is
confined to certain intervals.

For example, if the interaction has a finite range, i.e., it seizes to exist outside an
interval [a, b], we can set

aj := a + (j − 1)(b − a)

n
for j = 1, 2, · · · , n.

In this way, by taking large values for n we can reduce the initial scattering problem
to those whose solution requires solving the wave equation in small intervals. If the
interaction is a smooth function of space, we can approximate it by a constant in
each of these intervals. This in turn simplifies the calculation of Mj . We can use
the result of this calculation together with (36) to find an approximate expression
for M. Aside from the technical problems of multiplying a large number of 2 × 2
matrices, this provides a simple approach for the solution of the scattering problem
for finite-range linear interactions.

We can easily implement this procedure to solve the scattering problem for
a multi-center point interaction (7). To do this we label the centers of the point
interaction so that c1 < c2 < · · · < cn and compute the transfer matrix for single-
center point interactions associated with cj . As we explained above this has the form

Mj = N−1
j Bj Nj , (37)

where Nj is given by the right-hand side of (26) with c changed to cj . We can then
determine the transfer matrix of the multi-center point interaction by invoking the
composition rule (36). The result is

M = N−1
n BnNnN−1

n−1Bn−1Nn−1 · · · N−1
1 B1N1. (38)

In particular, we find that

det M = det B1 det B2 · · · det Bn. (39)

amostafazadeh@ku.edu.tr



84 A. Mostafazadeh

Combing this equation with (21), we infer that a multi-center point interaction
violates reciprocity in transmission if and only if it consists of an odd number of
anomalous single-center point interactions.

Next, consider a multi-delta-function potential

v(x) = ε

n∑
j=1

zj δ(x − cj ), (40)

where ε is a nonzero real parameter and zj are possibly complex coupling constants.
We can identify this with the multi-center point interaction with matching matrices

Bj =
[

1 0
ε zj 1

]
. (41)

Substituting this relation in (38) we find the transfer matrix M for (40). This has a
unit determinant, because det Bj = 1 and M satisfies (39).

It is not difficult to see that the transfer matrix M of the multi-delta-function
potential (40) and hence its entries are polynomials of degree at most n in the
parameter ε. In view of (23), and the fact that det M = 1, this implies that
the same is true of the Jost solutions of the Schrödinger equation (2) for this
potential. This observation shows that if we treat ε as a perturbation parameter and
perform an n-th order perturbative calculation of the Jost solutions, we obtain their
exact expression. In view of (11), this allows for determining the reflection and
transmission amplitudes of (40). We therefore have the following result.

Theorem 1 The n-th order perturbation theory gives the exact solution of the
scattering problem for multi-delta-function potentials with n centers.

In fact, a direct analysis shows that n-th order perturbation theory gives the
exact solution of the Schrödinger equation (2) for multi-delta-function poten-
tials (40), [54].

3 Scattering Matrix

By definition, the scattering operator, which is also known as the scattering
matrix, maps the waves traveling toward the interaction region (incoming waves)
to those traveling away from it (outgoing waves). In one dimension, the boundary
conditions (1) at spatial infinities show that the incoming waves have the asymptotic
form A−(k)eikx (respectively B−(k)e−ikx), if their source is located at x = −∞
(respectively x = +∞), and the outgoing waves tend to B+e−ikx as x → −∞
and A+(k)eikx as x → +∞. In light of these observations, we can quantify the
scattering operator by a 2 × 2 matrix S(k) that connects A−(k) and B+(k) to A+(k)

and B−(k). Clearly there are four different ways of doing so, namely
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S1

[
A−
B+

]
=
[

A+
B−

]
, S2

[
A−
B+

]
=
[

B−
A+

]
,

S3

[
B+
A−

]
=
[

A+
B−

]
, S4

[
B+
A−

]
=
[

B−
A+

]
.

(42)

These correspond to various conventions for defining the S-matrix in one dimension.
It is easy to see that

S2 = σ 1S1, S3 = S1σ 1, S4 = σ 1S1σ 1, (43)

where σ 1 is the first Pauli matrix,

σ 1 :=
[

0 1
1 0

]
.

Next, let us express the entries of S1 in terms of the reflection and transmission
amplitudes. To do this, we implement the first equation in (42) for the Jost solutions
ψ±(x). For ψ(x) = ψ+(x), A± and B± are given by (15). Substituting these in the
first equation in (42) gives

S1

[
1
0

]
=
[
tl
rl

]
. (44)

Similarly for ψ(x) = ψ−(x), we use (15) to obtain

S1

[
0
1

]
=
[
rr

tr

]
. (45)

In view of Eqs. (44) and (45),

S1 =
[
tl rr

rl tr

]
. (46)

This relation together with (43) imply

S2 =
[
rl tr
tl rr

]
, S3 =

[
rr tl
tr rl

]
, S4 =

[
tr rl

rr tl

]
. (47)

According to Eqs. (46) and (47), we can use any of S1, S2, S3, and S4 to encode
the information about the scattering properties of the system. They are therefore
physically equivalent. We adopt the convention of identifying the S-matrix with S1,
i.e., set
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S :=
[
tl rr

rl tr

]
. (48)

This choice has the appealing property of reducing to the 2 × 2 identity matrix I in
the absence of interactions.

Eigenvalues of the scattering matrix turn out to contain some useful information
about the scattering properties of the system. In view of (48), they have the form:

s± = tl + tr
2

±
√(

tl − tr
2

)2

+ rlrr . (49)

In particular, whenever tl = tr =: t,

s± = t± √
rlrr . (50)

Both the transfer and the S-matrix contain complete information about the
scattering data, but in contrast to the transfer matrix the S-matrix does not obey
a useful composition rule. An advantage of the S-matrix is the simplicity of its
higher-dimensional, relativistic, and field theoretical generalizations [76].4

4 Potential Scattering, Reciprocity Theorem, and Invisibility

Consider the time-independent Schrödinger equation (2) for a scattering potential
v(x) which admits Jost solutions ψ± and defines a valid scattering problem. Being
solutions of a second order linear homogeneous differential equation, ψ± are
linearly independent if and only if their Wronskian, W(x) := ψ−(x)ψ ′+(x) −
ψ+(x)ψ ′−(x), does not vanish at some x ∈ R, [5]. In fact, because the Schrödinger
equation (2) does not involve the first derivative of ψ , W(x) is a constant.5 We can
determine this constant using the asymptotic expression (11) for the ψ±(x). Doing
this for x → −∞ and x → +∞, we respectively find W(x) = 2ik/tl (k) and
W(x) = 2ik/tr (k). This proves the following reciprocity theorem.

Theorem 2 (Reciprocity in Transmission) The left and right transmission ampli-
tudes of every real or complex scattering potential coincide, i.e.,

tl (k) = tr (k). (51)

4A genuine multidimensional generalization of the transfer matrix has been recently proposed in
[31].
5This can be easily checked by differentiating W(x) and using (2) to show that W ′(x) = 0.
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In the following we use t(k) for the common value of tl (k) and tr (k) whenever
a scattering system has reciprocal transmission.

In view of Eqs. (20), (21), (22), (48), and (51), the transfer and scattering matrices
and the scattering data associated with real or complex scattering potentials satisfy:

M = 1

t

[
t2 − rlrr rr

−rl 1

]
, det M = 1, S =

[
t rr

rl t

]
, (52)

rl = −M21

M22
, rr = M12

M22
, t = 1

M22
. (53)

Another consequence of (51) is that the Wronskian of the Jost solutions take the
form

W(x) = 2ik

t(k)
. (54)

This is a number depending on the value of k. In particular, for k ∈ R
+ it cannot

diverge. This proves the following theorem.

Theorem 3 Let v(x) be a real or complex scattering potential. Then its transmis-
sion amplitude does not vanish for any wavenumber, i.e.,

t(k) �= 0 for k ∈ R
+. (55)

This theorem shows that real and complex scattering potentials can never serve as a
perfect absorber. According to Theorem 2 they cannot even serve as an approximate
one-way filter.

Next, we examine the following simple example:

v(x) = zχ [0,L](x) =
{
z for x ∈ [0, L],
0 for x /∈ [0, L], (56)

where z and L are nonzero complex and real parameters. This is a piecewise constant
finite-range potential with support [0, L], which we can identify with a rectangular
barrier potential of a possibly complex height z.

We can easily solve the Schrödinger equation (2) for the barrier potential (56).
Its general solution has the form

ψ(x) =
⎧⎨⎩

A−(k)eikx + B−(k)e−ikx for x < 0,

A0(k)eiknx + B0(k)e−iknx for x ∈ [0, L],
A+(k)eikx + B+(k)e−ikx for x ≥ L,

(57)
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where Aj(k) and Bj (k), with j = 0,±, are complex-valued coefficient functions,

n :=
√

1 − z

k2
, (58)

and for every complex number w we use
√

w to label the principal value of w1/2,
i.e.,

√
w = √|w|eiϕ with ϕ ∈ [0, π). By demanding ψ to be continuous and

differentiable at x = L and x = 0, we can respectively express A+ and B+ in
terms of A0 and B0, and A0 and B0 in terms of A− and B−. This in turn allows
us to relate A+ and B+ to A− and B−. We can write the resulting equations in the
form (14) with the transfer matrix given by

M(k) =
[ [cos(kLn) + in+ sin(kLn)]e−ikL in− sin(kLn)e−ikL

−in− sin(kLn)eikL [cos(kLn) − in+ sin(kLn)]eikL

]
,

(59)
and n± := (n ± n−1)/2.

In view of (53), we can use (59) to read off the expression for the reflection and
transmission amplitudes of the barrier potential (56). These have the form:

rl (k) = in− tan(kLn)

1 − in+ tan(kLn)
, (60)

rr (k) = in− tan(kLn)e−2ikL

1 − in+ tan(kLn)
, (61)

t(k) = e−ikL

cos(kLn) − in+ sin(kLn)
. (62)

Clearly, t(k) �= 0 for all k ∈ R
+. We can check that indeed det M(k) = 1, and

evaluate the S-matrix and its eigenvalues. In light of (50) the latter are given by

s±(k) =
[

1 ± in− tan(kLn)

1 − in+ tan(kLn)

]
e−ikL. (63)

According to (60) the barrier potential (56) is left-reflectionless if and only if n
is real and k = km := πm/Ln for a positive integer m.6 In this case it is also right-
reflectionless, but not in general transparent. It is easy to show that for these values
of the wavenumber, t(k) = e−imπ(n−1+1). This equals unity, i.e., the potential is
transparent and hence bidirectionally invisible if and only if there is an integer q

such that n = (2q/m − 1)−1. It is easy to see that this is equivalent to demanding
that

6Equation (58) implies that km = √(πm/L)2 + z. This in turn means that for z > 0, m can be any
positive integer, and for z < 0, m > L

√−z/π .
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z = 4π2q(q − m)

L2
, k = 2q − m

L
.

Because k > 0, the latter relation implies that 2q > m.
The entries of the transfer matrix for the barrier potential (56) are smooth

functions of the wavenumber k. In fact, we can analytically continue them to the
entire complex k-plane. This turns out to be a common feature of all finite-range
potentials. To see this first we note that if a potential v(x) decays exponentially as
x → ±∞, i.e., there are positive numbers μ± satisfying (13), then the Jost solutions
are holomorphic (complex analytic) functions in the strip [3]:

Sμ± := {k ∈ C | − μ− < Im(k) < μ+} . (64)

In light of (23) and the fact that det M = 1, this implies that the same holds for the
entries of the transfer matrix. We state this result as a theorem:

Theorem 4 Let v(x) be a real or complex potential satisfying (13) for some μ± >

0. Then the entries Mij (k) of its transfer matrix are holomorphic functions in the
strip (64).

A basic result of complex analysis is that a nonzero holomorphic function can
only vanish at a discrete set of isolated points. In view of Theorem 4 this applies to
the entries of the transfer matrix of exponentially decaying potentials. In particular,
for each choice of i and j in {1, 2}, either Mij (k) = 0 for all k ∈ Sμ± or there
is a (possibly empty) discrete set of isolated values of k ∈ Sμ± at which Mij (k)

vanishes. This is particularly important, because Sμ± contains the positive real axis
where the physical wavenumbers reside.

According to (53), the zeros of M12(k) (respectively M21(k)) that are located on
the positive real axis are the wavenumbers k0 at which the right (respectively left)
reflection amplitude of the potential v(x) vanishes, i.e., v(x) is right- (respectively
left-) reflectionless at k0. Similarly, if M22(k0) = 1, then t(k0) = 1, and v(x) is
transparent at k0. Therefore real and positive zeros of M12(k), M21(k), and M22(k)−
1 are the wavenumbers at which v(x) is right-reflectionless, left-reflectionless, and
transparent. In particular, equations

M12(k) = M22(k) − 1 = 0, (65)

M21(k) = M22(k) − 1 = 0, (66)

respectively characterize the invisibility of the potential from the right and left.
These results are clearly valid for any scattering system whose scattering features
can be described using a transfer matrix.

The following no-go theorem is a simple consequence of Eqs. (53) and the above-
mentioned property of the zeros of holomorphic functions.

Theorem 5 If the entries Mij (k) of the transfer matrix for a scattering system are
nonzero functions that are holomorphic on the positive real axis in the complex k-
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plane, then the system cannot display broadband reflectionlessness, transparency,
or invisibility from either direction.

According to Theorem 4, the conclusion of this theorem applies to exponentially
decaying and finite-range potentials.

The above analysis does not exclude the existence of exponentially decaying
potentials that are unidirectionally or bidirectionally reflectionless for all k ∈ R

+
(fullband reflectionlessness). Such potentials were known to exist since the 1930s.
The principal example is the Pöschl-Teller potential:

v(x) = − ζ

cosh(αx)
,

where ζ and α are positive real parameters. It turns out that the scattering problem
for this potential admits an exact solution, and that for integer values of ζ/α2 it is
bidirectionally reflectionless for all k ∈ R

+, [10]. The Pöschl-Teller potential is a
member of an infinite class of real, attractive (negative), exponentially decaying
potentials with this property. These were initially obtained in the 1950s as an
application of the methods of inverse scattering theory [20]. Their much less-known
complex analogs were constructed in the 1990s, [74].7

The construction of scattering potentials that are unidirectionally invisible in
the entire spectral band is a much more recent development [16, 30]. Before
making specific comments about these potentials, we wish to address the problem
of the existence of exponentially decaying and finite-range potentials that are
unidirectionally reflectionless, transparent, or invisible in the whole spectral band.
To do this, first we examine the structure of the transfer matrix M(k) for negative
values of k.

Consider a solution of the Schrödinger equation (2) for a scattering potential
v(x). In order to make the k-dependence of this solution explicit, we denote it by
ψ(k, x). In particular, we write (1) as

ψ(k, x) → A±(k)eikx + B±(k)e−ikx for x → ±∞. (67)

Because the Schrödinger equation (2) is invariant under k → −k,

ψ̆(k, x) := ψ(−k, x) (68)

is also a solution of (2). In view of the fact that v(x) is a scattering potential, ψ̆(k, x)

must satisfy the asymptotic boundary conditions:

ψ̆(k, x) → Ă±(k)e−ikx + B̆±(k)eikx for x → ±∞, (69)

7Reflectionless potentials also arise as soliton solutions of nonlinear differential equations [24].
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where Ă±(k) and B̆±(k) are some coefficient functions. We can use (67), (68),
and (69) to show that for k ∈ R

−,

Ă±(k) = B±(−k), B̆±(k) = A±(−k). (70)

Now, suppose that we can analytically continue M(k) from k ∈ R
+ to k ∈ R

−.
Then we can relate Ă+(k) and B̆+(k) to Ă−(k) and B̆−(k) using M(k) for k ∈ R

−.
This gives [

Ă+(k)

B̆+(k)

]
= M(k)

[
Ă−(k)

B̆−(k)

]
. (71)

Substituting (70) in this equation and using (14), we arrive at

M(k) = σ 1M(−k)σ 1, (72)

where k ∈ R
−. Because this equation is invariant under k → −k, it holds for all

k ∈ R \ {0}. In terms of the components of M(k), we can write (72) in the form:

M11(−k) = M22(k), M12(−k) = M21(k), (73)

which again hold for all k ∈ R \ {0}.
Equations (72) and (73) apply to any scattering system in which the wave equa-

tion involves even powers of k and have a transfer matrix that can be analytically
continued from the positive to the negative real axis in the complex k-plane. For such
systems, we can determine the reflection and transmission amplitudes for k ∈ R

−,
by inserting (73) in (22). This gives

rl (−k) = −rr (k)

D(k)
, tl (−k) = tl (k)

D(k)
, rr (−k) = −rl (k)

D(k)
, tr (−k) = tr (k)

D(k)
,

(74)

where

D(k) := M11(k)

M22(k)
= tl (k)tr (k) − rl (k)rr (k) = det S(k). (75)

Again, because Eqs. (74) are invariant under k → −k, they hold for all k ∈ R \ {0}.
A straightforward consequence of these equations is that if rl/r (k) (respectively
tl/r (k)) vanishes for all k ∈ R

+, then it will also vanish for all k ∈ R
−. It

is important to note that this conclusion relies on the existence of the analytic
continuation of Mij (k) from k ∈ R

+ to k ∈ R
−. Certainly, this condition holds for

finite-range and exponentially decaying potentials. This together with Theorem 5
prove the following result.
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Theorem 6 Scattering potentials with a finite range or an asymptotic exponential
decay cannot display broadband unidirectional reflectionlessness, transparency, or
invisibility.

This theorem shows that as far as finite-range and exponentially decaying potentials
are concerned, unidirectional reflectionlessness, transparency, and invisibility can
only be achieved at a discrete set of isolated values of the wavenumber.

The principal example of a unidirectionally invisible finite-range potential is

v(x) =
{
z eiKx for x ∈ [−L

2 , L
2 ],

0 for x /∈ [−L
2 , L

2 ], (76)

where z, K , and L are nonzero real parameters, and L > 0, [13, 23, 25, 61]. This
potential is unidirectionally invisible from the left for the wavenumber k = K/2,
if K = 2π/L and K2z 
 1. It belongs to the class of locally periodic finite-range
potentials of the form

v(x) =
{

f (x) for x ∈ [−L
2 , L

2 ],
0 for x /∈ [−L

2 , L
2 ], (77)

where

f (x) :=
∞∑

n=−∞
zne

iKnx, (78)

zn are complex coefficients, and Kn := 2πn/L. The following theorem, which is
proven in Ref. [46], reveals a remarkable property of these potentials.

Theorem 7 Let v(x) be a potential of the form (77) and suppose that we are
interested in the scattering of waves of wavenumber k satisfying |zn|/k2 
 1,
so that the first Born approximation is valid. If zn = 0 for all n ≤ 0, v(x) is
unidirectionally left-invisible for all k = Kn/2 = πn/L.8

Now, consider taking L → ∞. Then (77) becomes v(x) = f (x), the Fourier
series in (78) turns into a Fourier integral, the role of zn is played by the Fourier
transform of v(x), i.e., ṽ(K) := ∫∞

−∞ e−iKxv(x)dx, and Theorem 7 states that if the
first Born approximation is reliable, then v(x) is unidirectionally left-invisible for
all k ∈ R

+ provided that ṽ(K) = 0 for K ≤ 0. A highly nontrivial observation is
that the same conclusion may be reached without assuming the validity of the first
Born approximation [16, 30]. In other words the following theorem on broadband
invisibility holds.

8This means that v(x) is unidirectionally left-invisible for k = Kn/2 = πn/L provided that we can
neglect terms of order (zn/k2)2 in the calculation of the reflection and transmission amplitudes.
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Theorem 8 A scattering potential v(x) is unidirectionally left-invisible for all
wavenumbers k ∈ R

+, if its Fourier transform ṽ(K) vanishes for all K ≤ 0.

Because the hypothesis of this theorem is equivalent to the condition that the real
and imaginary part of v(x) are connected by the spatial Kramers-Kronig relations,
these potentials are sometimes called Kramers-Kronig potentials.9 It is well-known
that they have a power-law decay at spatial infinities.10

The unidirectional invisibility of the potential (76) for k = K/2 = π/L is a
perturbative result [46]; it is violated for sufficiently large values of |z|, [18, 29]. This
potential does however support exact (nonperturbative) unidirectional invisibility
for particular values of z, [51]. Another example of a finite-range potential with
exact unidirectional invisibility is (77) with

f (x) := −2αK2(3 − 2eiKx)

e2iKx + α(1 − eiKx)2
,

where α and K are real parameters. It turns out that this potential is unidirectionally
right-invisible for k = K/2 = πn/L with n being any positive integer provided that
α > −1/4, [47]. The simplest scattering potential supporting exact unidirectional
invisibility are barrier potentials of the form v(x) = z1χ[−a1,0) + z2χ[0,a2] where zj
and aj are respectively complex and positive real parameters [43]. See also [67].

5 Spectral Singularities, Resonances, and Bound States

In Sect. 4 we show that the Wronskian of the Jost solutions ψ± of the Schrödinger
equation for a scattering potential v(x) is given by

W(x) = 2ik

t(k)
= 2ikM22(k). (79)

This in particular implies that ψ± are linearly dependent solutions of the
Schrödinger equation (2) whenever k is a real and positive zero of M22(k). This
represents a physical wavenumber k at which t(k) blows up. The corresponding
value of the energy, E := k2, which belongs to the continuous spectrum of the

Schrödinger operator, − d2

dx2 +v(x), is called a spectral singularity11 of the potential
[38].

9For a review of basic properties of these potentials, see [15].
10This explains why Theorems 6 and 8 do not conflict.
11The notion of a spectral singularity was originally introduced in [60] for Schrödinger operators
in the half-line. It was subsequently generalized to the case of full-line in [21]. The term “spectral
singularity” was originally used to refer to this notion in [69]. For a readable account of basic
mathematical facts about spectral singularities and further references, see [14].
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If k2
0 is a spectral singularity, M22(k0) = 0, but because det M(k0) = 1, neither

of M12(k0) and M21(k0) can vanish. In light of (53), this implies that similarly to the
transmission amplitude t(k), the reflection amplitudes rl/r (k) blow up at k = k0.
Furthermore, (23) shows that whenever M22(k) = 0,

ψ+(x) = −M21(k)

M12(k)
ψ−(x) →

{−M21(k)e−ikx for x → −∞,

eikx for x → +∞.
(80)

Application of this relation for k = k0 shows that at a spectral singularity Jost
solutions ψ±(x) are scattering solutions of the Schrödinger equation that satisfy
outgoing asymptotic boundary conditions. These are also known as the Seigert
boundary conditions [70] which provide a standard description of resonances.

Consider a solution ψ(x) of the time-independent Schrödinger equation (2) for
a general complex value of the energy k2 and suppose that it satisfies the outgoing
asymptotic boundary conditions:

ψ(x) → N±(k) e±ikx for x → ±∞, (81)

where N±(k) are nonzero complex coefficients. ψ(x) corresponds to a solution
ψ(x, t) of the time-dependent Schrödinger equation, i∂tψ(x, t) = −∂2

xψ(x, t) +
v(x)ψ(x, t), namely

ψ(x, t) := e−ik2tψ(x) = e−Γ t e−iEtψ(x), (82)

where

E := Re(k)2 − Im(k)2, Γ := −2Re(k)Im(k). (83)

If Γ > 0, ψ(x, t) decays exponentially as t → ∞. In this case, we identify ψ(x, t)

with a resonance. The quantity Γ which determines its decay rate is called the width
of the resonance. If Γ < 0, ψ(x, t) grows exponentially as t → ∞, and we call
it an antiresonance. It is not difficult to see that resonances and antiresonances are
also zeros of M22(k). But the corresponding value of k2 lie in the lower and upper
complex energy half-planes,

Elower := {k2 ∈ C | Im(k2) < 0}, Eupper := {k2 ∈ C | Im(k2) > 0},

respectively.
The Jost solutions of the time-independent Schrödinger equation (2) that corre-

spond to a spectral singularity satisfy the above description of a resonance except
that for a spectral singularity k is real. This suggests identifying these solutions
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with certain zero-width resonances [38].12 Note that spectral singularities lie on the
positive real axis in the complex energy plane:

E+ := {k2 ∈ C | Re(k2) > 0 and Im(k2) = 0}. (84)

There is another way in which we can have a real zero of M22(k) such that Γ = 0.
This is when k is purely imaginary; i.e., E = k2 ∈ R

−. Let us set k = i
√|E|. Then,

according to (80), ψ+ determines a solution of the time-independent Schrödinger
equation that decays exponentially at spatial infinities. This solution is clearly
square-integrable. Therefore its energy E = k2, which is real and negative, belongs

to the point spectrum of the Schrödinger operator − d2

dx2 + v(x); it is a real and
negative eigenvalue of this operator that corresponds to a bound state of the potential
v(x). If k is a zero of M22(k) that lies in the upper-half k-plane, i.e., Im(k) > 0, then
|ψ+(x)| is again exponentially decaying as x → ±∞. Therefore ψ+(x) is a square-

integrable function and k2 is a complex eigenvalue of − d2

dx2 + v(x).
Note that the above discussion of the interpretation of the zeros of M22(k)

as spectral singularities, resonances, antiresonances, and eigenvalues of the

Schrödinger operator − d2

dx2 + v(x) applies to any scattering potential. As shown in
[21], in this case the Jost solutions ψ± and consequently the entries of the transfer
matrix are continuous functions of k for Im(k) ≥ 0. They might not however be
holomorphic in any region containing the real axis in the complex k-plane. If there
is such a region in which M22(k) is a nonzero holomorphic function, then the zeros
of M22(k) that lie in this region form a discrete isolated set of points. This in turn
implies that one cannot have spectral singularities in an extended interval of real
numbers other than the whole positive real axis. In particular we have the following
result.

Theorem 9 If v(x) is a real or complex potential with a finite range or an
asymptotic exponential decay, so that (13) holds for some μ± ∈ R

+, then either
its spectral singularities are isolated points of the positive real axis in the complex
energy plane or cover the whole positive real axis.

Next, we examine the behavior of the eigenvalues s± of the S-matrix in the
vicinity of a spectral singularity k2

0. As k → k0, ε := M22(k) tends to zero. Because
the entries of the transfer matrix are continuous functions on the upper half-plane
and Im(k0) ≥ 0, none of them blow up at k = k0. We also know that det M(k) = 1.
In view of these observations and (50), we can show that the eigenvalues of the
S-matrix for a scattering potential satisfy

12Spectral singularities must be distinguished with the solutions of the time-independent
Schrödinger equation that correspond to a bound state in the continuum [17, 72] for the following
reasons: (1) They define scattering states that do not decay at spatial infinities. (2) They may exist
for exponentially decaying and short-range potentials. (3) As we explain in Sect. 8, real potentials
cannot have spectral singularities. None of these holds for bound states in the continuum.
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s±(k) → 1

ε
± 1

|ε| ∓ sgn(ε)M11(k0)

2
for k → k0. (85)

This implies that as k2 approaches a spectral singularity, one of the eigenvalues of
S(k) diverges while the other attains a finite limit. More specifically we have the
following result.

Theorem 10 Let k2
0 be a spectral singularity of a scattering potential v(x). Then

as k → k0 the eigenvalues (50) of the S-matrix behave as follows. Either s−(k) →
−M11(k0)/2 and |s+(k)| → ∞, or |s−(k)| → ∞ and s+(k) → M11(k0)/2.

Now, suppose that v(x) is a scattering potential such that det S(k) is a bounded
function of k. Then Theorem 10 implies that M11(k0) = 0 whenever k2

0 is a spectral
singularities of v(k), i.e., k0 is a common zero of M11(k) and M22(k). Spectral
singularities satisfying this condition are said to be self-dual [42]. We study these in
Sect. 9.

Let us examine the spectral singularities of a couple of exactly solvable poten-
tials.

First, consider a delta-function potential with a complex coupling constant z,
[37],

v(x) = z δ(x). (86)

We can determine its transfer matrix using (8), (26), and (27) with c = 0. This gives

M(k) =
[

1 − iz/2k −iz/2k

iz/2k 1 + iz/2k

]
. (87)

In view of this relation and (53),

rl (k) = rr (k) = −iz

2k + iz
, t(k) = 2k

2k + iz
. (88)

The following are consequences of the fact that M22(k) has a single zero, namely
k0 = −iz/2.

• The delta-function potential has a spectral singularity, if and only if z is purely
imaginary and Im(z) > 0, i.e., z = iζ for some ζ ∈ R

+. In this case, k0 = ζ/2,
the spectral singularity has the value k2

0 = ζ 2/4, and

ψ+(x) = e±ik0x for ± x ≥ 0. (89)

• It has a single resonance (respectively antiresonance) with a square-integrable
position wave function ψ(x) if and only if Im(z) > 0 (respectively < 0) and
Re(z) < 0. In this case ψ(x) is a constant multiple of the right-hand side of (89)
with k0 = [Im(z) − iRe(z)]/2.
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• It has a bound state with a real and negative energy if and only if z ∈ R
−. The

position wave function for this state is a constant multiple of the right-hand side
of (89) with k0 = i|z|/2.

Next, we consider the spectral singularities of the complex barrier potential (56).
According to (59), zeros k0 of M22(k) satisfy

cos(k0Ln0) − in0+ sin(k0Ln0) = 0, (90)

where

n0 :=
√

1 − z

k2
0

, n0+ := n2
0 + 1

2n0
. (91)

It is not difficult to express (90) in the form:

e−2ik0Ln0 =
(
n0 − 1

n0 + 1

)2

. (92)

k2
0 is a spectral singularity if and only if k0 is a positive real number satisfying this

relation. For such a k0, we can write (92) as a pair of real equations for the k0,
η0 := Re(n0), and κ0 := Im(n0). Because

n0 = η0 + iκ0, (93)

evaluating the modulus of both side of (92) we find

κ0 = 1

2k0L
ln

∣∣∣∣∣ (η0 − 1)2 + κ2
0

(η0 + 1)2 + κ2
0

∣∣∣∣∣ . (94)

Similarly, equating the phase angles of both side of (92), we obtain

k0 = 2πm − ϕ0

2Lη0
, (95)

where m is a positive integer, and ϕ0 is the principle argument of the right-hand side
of (92), i.e.,

ϕ0 =
{

arctan(α0) for η2
0 + κ2

0 ≥ 1,

arctan(α0) − π for η2
0 + κ2

0 < 1,
α0 := 2κ0

(η2
0 + 1)2 + κ2

0

. (96)

Next, let us identify the barrier potential (56) with an optical potential (4) that
describes the scattering of normally incident polarized electromagnetic waves by an
infinite slab of homogeneous nonmagnetic material. We choose a coordinate system
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in which the slab occupies the space confined between the planes x = 0 and x = L,
and the wave is polarized along the y-direction and propagates along the x-direction.
Then the relative permittivity of the system that enters the Helmholtz equation (3)
has the form:

ε̂(x) =
{

ε̂slab for x ∈ [0, L],
1 for x /∈ [0, L], (97)

where ε̂slab is the relative permittivity of the slab. In general this takes a pos-
sibly complex constant value. We can identify the Helmholtz equation with the
Schrödinger equation (2) provided that v(x) is the barrier potential (56) with
z = k2(1 − ε̂slab). Substituting this equation in (58), we find n = √

ε̂. Therefore
n is the refractive index of the slab.

According to (94) the optical system we have described has a spectral singularity,
if the imaginary part of the refractive index of our slab is negative. This is precisely
the case where the slab is made out of gain material. To see this we note that the gain
coefficient of a homogeneous medium is related to its refractive index according to

g = −4π Im(n)

λ
= −2kIm(n), (98)

where λ = 2π/k is the wavelength [71]. If the refractive index of the slab equals
n0, it emits coherent outgoing radiation of wavelength λ0 = 2π/k0, i.e., it acts as a
laser. In view of (94), for k = k0 and n = n0, the gain coefficient (98) is given by
[40]:

g = 1

L
ln

∣∣∣∣∣ (η0 + 1)2 + κ2
0

(η0 − 1)2 + κ2
0

∣∣∣∣∣ = 2

L
ln

∣∣∣∣n0 + 1

n0 − 1

∣∣∣∣ . (99)

This relation is known as the laser threshold condition in optics [71]. It is usually
derived by balancing the energy input of the laser by the sum of its energy output
and losses. Here we obtain it using the notion of spectral singularity, i.e., demanding
the existence of purely outgoing solutions of the wave equation. Notice that this
condition also yields a formula for the available laser modes, namely (95). For
typical lasers, k0L � 1. This implies m � 1 which together with (95) give
k0 ≈ πm/LRe(n0). The latter is also a well-known result in optics.

The notion of spectral singularity can be extended to more general scattering
problems. This is done by identifying it with the values of k2 at which the left or
right reflection and transmission coefficients blow up. This corresponds to situations
where ψ(x) satisfies purely outgoing boundary conditions.13 For a linear scattering
problem, the assumption det M(k) �= 0 together with Eqs. (22) imply that spectral

13The importance of purely outgoing waves in the laser theory predates the discovery of their
connection to the mathematics of spectral singularities. See for example [73].
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singularities are given by the real and positive zeros of M22(k) and that they
are always bidirectional, i.e., both the left and right reflection and transmission
coefficients diverge at a spectral singularity.

Determination of spectral singularities of an optical system having an arbitrary
geometry is equivalent to finding its laser threshold condition. This observation has
been employed for obtaining laser threshold condition for bilayer [42], cylindrical
[57], and spherical [55, 56, 58] lasers. A brief review of the physical aspects of
spectral singularities is provided in [49]. For a discussion of the spectral singularities
of nonlinear Schrödinger equation and their applications in optics, see [9, 12, 26, 44].

6 Space Reflections and Time-Reversal Transformation

In this section we explore the space reflection and time-reversal transformations
in quantum mechanics. This requires the knowledge of unitary and Hermitian
operators acting in a Hilbert space. Because a precise definition of a Hermitian
operator involves certain notions of functional analysis that are not familiar to most
physicists, here we provide a less rigorous description. The interested reader may
consult [39, 62] for a more careful treatment of the subject.

Consider a linear operator L acting in a Hilbert space H , and let ≺ · , · � denote
the inner product of H . Then the adjoint of L is the operator L† : H → H that
satisfies

≺ ·, L · �=≺ L†· , · � .

We call L Hermitian or self-adjoint if L† = L. We call it a unitary operator if
its domain is H , it is one-to-one and onto, and L−1 = L†. These conditions are
equivalent to the requirement that

≺ Lφ1, Lφ2 �=≺ φ1, φ2 �,

i.e., L leaves the inner product invariant. Here and in what follows φ1 and φ2 are
arbitrary elements of H . It turns out that L is unitary if and only if it preserves the
norm of the vectors; ‖ Lφ1 ‖=‖ φ1 ‖ where ‖ φ1 ‖:= √≺ φ1, φ1 �.

In the standard quantum mechanical description of the nonrelativistic motion of a
particle on a straight line, we take H to be the space of square integrable functions
L2(R) endowed with the inner product: 〈φ1|φ2〉 := ∫∞

−∞ φ1(x)∗φ2(x)dx.
Hermitian operators play a basic role in both kinematical and dynamical aspects

of quantum mechanics. Observables of quantum systems are described by Hermitian
operators not just because they have a real spectrum, but more importantly because
their expectation values are real. Non-Hermitian operators may have a real spectrum
and even a complete set of eigenvectors forming a basis of the Hilbert space, but
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there are always states in which their expectation value is not real.14 Because the
calculation of expectation values involves the inner product of the Hilbert space, a
non-Hermitian operator can play the role of an observable of a quantum system, only
if we can modify the inner product on the space of state vectors or even the space
of state vectors itself [45], so that the operator acts in the new Hilbert space as a
Hermitian operator.15 This leads to different representations of quantum mechanics
whose structure is identical to the standard representation that we employ here [39].
The Hamiltonian operator is required to be Hermitian not only because it is usually
identified with the energy observable, but also because it ensures the unitarity
of time-evolution, i.e., the time-evolution operator defined by the Hamiltonian is
a unitary operator. A celebrated result of functional analysis, known as Stone’s
theorem [64], establishes the converse of this statement. Therefore, the unitarity
of dynamics implies the Hermiticity of the Hamiltonian. This result also disqualifies
non-Hermitian operators from serving as the Hamiltonian operator for a unitary
quantum system.

Non-Hermitian operators can nevertheless be employed in the study of open
quantum systems and a variety of problems in the areas where some of the axioms
of quantum mechanics are violated. This has actually turned out to be more fruitful
than the attempts to use non-Hermitian operators for invoking the nonstandard
representations of quantum mechanics.

Having reviewed the meaning of Hermiticity and unitarity of an operator and
their role in quantum mechanics, we return to the study of space reflections and
time-reversal transformation.

For each a ∈ R, the active transformation, x → 2a − x, corresponds to the
reflection of the real line about the point a. This transformation induces a mapping
of the wave functions φ(x) according to φ(x) → φ(2a − x). We identify this with
the action of a linear operator Pa in L2(R), namely φ → φ̃ := Paφ, where

(Paφ)(x) := φ(2a − x). (100)

It is easy to show that Pa is a Hermitian operator. It is also clear that P2
a = I , so

that P−1
a = Pa . Combining this with the Hermiticity of Pa we conclude that Pa is

also a unitary operator.
We can use Pa to transform linear operators L(t) acting in L2(R) according to

L(t) → L̃(t) := Pa L(t)P−1
a = Pa L(t)Pa. (101)

14For a proof of this statement see [39, Appendix]. A more detailed discussion is provided in [68].
15This is obviously not always possible. A sufficient condition for the existence of such a modified
inner product is that the operator L satisfies the pseudo-Hermiticity relation L† = η Lη−1 for a
positive-definite bounded linear operator η with a bounded inverse. For further discussion of these
and related issues see [39, 45] and references therein.

amostafazadeh@ku.edu.tr



Scattering Theory and PT -Symmetry 101

For example, let x̂, p̂, and H(t) be respectively the standard position, momentum,
and Hamiltonian operators acting in L2(R), i.e.,

x̂ φ(x) := xφ(x), p̂ φ(x) := −iφ′(x), H(t) = p̂2

2m
+ v(x̂, t). (102)

We can use (100) to show that

{x̂,Pa} = 2aI, {p̂,Pa} = 0, (103)

where { · , · } stands for the anticommutator of operators. Equations (101), (102),
and (103) imply

˜̂x = 2aI − x̂, ˜̂p = −p̂, H̃ (t) = p̂2

2m
+ v(2aI − x̂, t). (104)

The first of these relations justifies the name “space reflection” or “parity operator
with respect to a” for Pa .

If H(t) is the Hamiltonian operator for a quantum system S , we call the quantum
system defined by H̃ the “space reflection of S with respect to a.” Equation (101)
and the unitarity of Pa imply that H̃ (t) is Hermitian if and only if so is H(t). This
means that space reflections of a unitary quantum system are unitary.

An operator L(t) is called parity-invariant with respect to a if L̃(t) = L(t). In
particular, a standard Hamiltonian operator (102) is parity-invariant with respect to
a if and only if v(2a − x, t) = v(x, t).

The parity operators Pa can be generated from P0 using the space-translation
operator Ta := e−iap̂ which satisfies:

(Ta φ)(x) = φ(x − a). (105)

To see this we use (100) and (105) to show that

(Paφ)(x) = φ(2a − x) = (P0φ)(x − 2a) = (T2aP0φ)(x).

Therefore,

Pa = T2aP0. (106)

We use the symbol P for P0 and refer to it as the parity operator in L2(R).
According to this terminology a standard Hamiltonian operator (102) is parity-
invariant or P-symmetric if and only if v(x, t) = v(−x, t). For a time-independent
potential v(x), this means that it is an even function.
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Next, consider the operation of complex-conjugation of complex-valued func-
tions, φ(x) → φ(x)∗. This defines a function T : L2(R) → L2(R) according to
(T φ)(x) := φ(x)∗. Because for any pair of complex numbers α1 and α2,

T (α1φ1 + α2φ2) = α∗
1T φ1 + α∗

2T φ2,

T is an antilinear operator. It is also clear that T squares to the identity operator I .
In particular, it is invertible, and T −1 = T .

Let us apply T to both sides of the time-dependent Schrödinger equation,

i
d

dt
ψ(x, t) = H(t)ψ(x, t). (107)

This gives −i d
dt
T ψ(x, t) = T H(t)ψ(x, t). We can write this equation in the form

i
d

d(−t)
T ψ(x, t) = H(−t)T ψ(x, t), (108)

where for a time-dependent linear operator L(t),

L(t) := T L(−t)T −1 = T L(−t)T . (109)

If we make the change of variables:

t → t := −t, ψ(x, t) → ψ(x, t) := ψ(x, t)∗ = (T ψ)(x, t),

Eq. (108) takes the form i d
dt

ψ(x, t) = H(t))ψ(x, t). Because t and t take arbitrary
real values, this equation is equivalent to

i
d

dt
ψ(x, t) = H(t)ψ(x, t). (110)

We can express the solutions of (107) and (110) in terms of the time-evolution
operators U(t) and U(t) for the Hamiltonians H(t) and H(t). For a given initial
state vector ψ0(x), we have

ψ(x, t) = U(t)ψ0(x), ψ(x, t) = U(t)ψ0(x)∗. (111)

According to these relations, as we increase the value of the time label t starting
from t = 0, the evolution operators U(t) and U(t) respectively determine ψ(x, t)

and ψ(x, t) for t > 0. In view of the fact that ψ(x,−t) = ψ(x, t)∗, we can say
that U(t) determines ψ(x, t) for t < 0. For this reason, the systems described by
the Hamiltonian operators H(t) and H(t) are said to be the time-reversal of one
another. This, in particular, suggests identifying the antilinear operator T with the
time-reversal operator.
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The above argument leaves a crucial question unanswered: Suppose that H(t) is a
Hermitian operator so that it determines a unitary quantum system. Does this imply
that the time-reversed system is also unitary? Equivalently, is H(t) Hermitian? The
answer turns out to be in the affirmative, because T satisfies

〈T φ1|T φ2〉 =
∫ ∞

−∞
[T φ1(x)]∗T φ2(x)dx =

∫ ∞

−∞
φ1(x)φ2(x)∗dx = 〈φ2|φ1〉.

(112)
With the help of this relation and the Hermiticity of H(t), we can show that

〈φ1|H(t)φ2〉 = 〈T 2φ1|H(t)φ2〉 = 〈T 2φ1|T H(−t)T φ2〉 = 〈H(−t)T φ2|T φ1〉
= 〈T φ2|H(−t)T φ1〉 = 〈T φ2|T 2H(−t)T φ1〉 = 〈T H(−t)T φ1|φ2〉
= 〈H(t)φ1|φ2〉.

This concludes the proof of the Hermiticity of H(t).
An antilinear operator S, which by definition satisfies

S(α1φ1 + α2φ2) = α∗
1Sφ1 + α∗

2Sφ2,

is said to be unitary, if

〈Sφ1|Sφ2〉 = 〈φ2|φ1〉. (113)

Unitary antilinear operators are also called “antiunitary operators” [76]. Similarly
to unitary linear operators they preserve the norm of state vectors.

Equation (112) means that T is an antiunitary operator. There are other antiuni-
tary operators that square to identity and share the time-reversal property of T .16

This implies that in general T is not the only possible choice for a time-reversal
operator [35]. In what follows, however, we take T to implement the time-reversal
transformation in L2(R) and refer to it as the time-reversal operator.

A possibly time-dependent linear operator L(t) is said to be time-reversal-
invariat or real if L(t) = L(t). It is called an imaginary operator if L(t) = −L(t).
For example, the standard position operator x̂ is real, because

x̂ φ(x) = T x̂T φ(x) = [xφ(x)∗]∗ = xφ(x) = x̂ φ(x),

while the standard momentum operator p̂ is imaginary, because

p̂ φ(x)=T p̂T φ(x)=T
[
−i

d

dx
φ(x)∗

]
=iT

[
d

dx
φ(x)∗

]
=i

d

dx
φ(x)= − p̂φ(x).

16A simple examples is Tτ := eiτT where τ ∈ R.
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Clearly L(t) is an imaginary operator if and only if iL(x) is real. In particular, iI

is imaginary, because I is a real operator. Note also that time-independent linear
operators LR and LI are respectively real and imaginary if and only if

[LR, T ] = 0, {LI , T } = 0.

We can easily show that the real multiples, sums, and products of real operators
are real. This for instance implies that p̂2 = −(ip̂)2 is a real operator. In light of
this observation, the time-reversal of a standard Hamiltonian operator (102) is given

by H(t) = p̂2

2m
+ v(x̂, t), where

v(x̂, t)φ(x) = T v(x̂,−t)T φ(x) = T [v(x,−t)φ(x)∗] = v(x,−t)∗φ(x).

This shows that v(x̂, t) is a real operator provided that v(x,−t) = v(x, t)∗. In
particular, for a time-independent standard Hamiltonian,

H = p̂2

2m
+ v(x̂), (114)

we have

H = p̂2

2m
+ v(x̂)∗, (115)

where v(x̂)∗φ(x) := v(x)φ(x) = v(x)∗φ(x). The Hamiltonian (114) is therefore
real if and only if v(x) is a real-valued potential.

Next, we explore the consequences of the combined action of parity and time-
reversal transformations. This is realized in L2(R) by PT whose effect on the wave
functions φ(x) and time-dependent linear operators L(t) are give by

φ(x) −→ φ̃(x) := (PT φ)(x) = φ(−x, t)∗,

L(t) −→ L̃(t) := P
[
T L(−t)T −1

]
P−1 = PT L(−t)(PT )−1 = PT L(−t)PT .

Here, in the last equality we have used the fact that P and T commute and square
to identity;

[P, T ] = 0, P2 = T 2 = I. (116)

Because P and T are respectively unitary and antiunitary operators,

PT (α1φ1 + α1φ2) = P(α∗T φ1 + α∗
2T φ2) = α∗PT φ1 + α∗

2PT φ2,

〈PT φ1|PT φ2〉 = 〈T φ1|T φ2〉 = 〈φ2|φ1〉.

These show that PT is an antiunitary operator. The same is true about PaT .
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We can use (116) and

x̂ = T x̂ T −1 = x̂, p̂ = T p̂ T −1 = −p̂,˜̂x = P x̂ P−1 = −x̂, ˜̂p = P p̂P−1 = −p̂, (117)

to show that

˜̂
x = PT x̂ (PT )−1 = −x̂,

˜̂
p = PT p̂ (PT )−1 = p̂. (118)

In other words,

{x̂,PT } = 0, [ p̂,PT ] = 0. (119)

Another consequence of (118) and the antilinearity of PT is that it transforms a
standard Hamiltonian operator of the form (114) to

H̃ = p̂2

2m
+ v(−x̂)∗. (120)

A linear operator L(t) is said to be PT -symmetric if it is invariant under the

combined action of P and T , i.e., L(t) → L̃(t) = L(t). For a time-independent
operator L, this means

[L,PT ] = 0.

In particular, p̂ is PT -symmetric, and a time-independent standard Hamiltonian H

is PT -symmetric if and only if its potential is PT -symmetric, i.e., v(−x)∗ = v(x).
In terms of the real and imaginary parts of v(x), which we denote by vr(x) and
vi(x), this condition takes the form

vr(−x) = vr(x), vi(−x) = −vi(x). (121)

Therefore, the real and imaginary parts of a PT -symmetric potential are respec-
tively even and odd functions. Similarly, it follows that H is PaT -symmetric if and
only if v(2a − x)∗ = v(x). This is equivalent to

vr(2a − x) = vr(x), vi(2a − x) = −vi(x). (122)

7 P-, T -, and PT -Transformation of the Scattering Data

Consider the scattering problem for a wave equation in one dimension that admits
solutions ψ(x) satisfying the asymptotic boundary conditions (1). Suppose that for
x → ±∞ the parity, time-reversal, and space translations respectively transform
ψ(x) according to:
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ψ(x)
P−→ ψ̃(x) := ψ(−x), ψ(x)

T−→ ψ(x) := ψ(x)∗,

ψ(x)
Ta−→ ψa(x) := ψ(x − a).

(123)

It is easy to see that these transformations leave the asymptotic boundary condi-
tions (1) form-invariant. This shows that the transformed wave functions, ψ̃(x),
ψ(x), and ψa(x) also define consistent scattering problems. We wish to explore the
behaviour of the corresponding reflection and transmission amplitudes. To do this,
we confine our attention to situations where we can define a transfer matrix M(k)

and examine the effect of the transformations (123) on M(k).
Let M̃(k), M(k), and Ma(k) respectively denote the transfer matrix for ψ̃(x),

ψ(x), and ψa(x). We can use (1), (14), and (123) to relate them to M(k). This
requires expressing the asymptotic expression for ψ̃(x), ψ(x), and ψa(x) in
the form (1) with (A±, B±) respectively replaced by (Ã±, B̃±), (A±, B±), and
(Aa±, Ba±). In this way we find asymptotic formulas for ψ̃(x), ψ(x) and ψa(x)

that together with (123) imply:

Ã± = B∓, B̃± = A∓, (124)

A± = B∗±, B± = A∗±, (125)

Aa± = e−iakA±, Ba± = eiakB±. (126)

Recalling that the transfer matrices M̃, M, and Ma satisfy[
Ã+
B̃+

]
= M̃

[
Ã−
B̃−

]
,

[
A+
B+

]
= M

[
A−
B−

]
,

[
Aa+
Ba+

]
= Ma

[
Aa−
Ba−

]
, (127)

we can use (14), (124), (125), and (126) to infer:

M̃ = σ 1M−1σ 1, M = σ 1M∗σ 1, Ma = e−iakσ 3 M eiakσ 3 , (128)

where

σ 1 :=
[

0 1
1 0

]
, σ 3 :=

[
1 0
0 −1

]
, eiaσ 3 =

[
eia 0
0 e−ia

]
.

It is instructive to examine the explicit expression for the entries of M̃, M, and
Ma . According to (128), they have the form:

M̃11 = M11

det M
, M̃12 = − M21

det M
, M̃21 = − M12

det M
, M̃22 = M22

det M
,

(129)

M11 = M∗
22, M12 = M∗

21, M21 = M∗
12, M22 = M∗

11, (130)
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Ma11 = M11, Ma12 = e−2iakM12, Ma21 = e2iakM21, Ma22 = M22. (131)

We can use these relations together with (22) to compute the reflection and
transmission amplitudes for the reflected, time-reversed, and translated waves,
ψ̃(x), ψ(x), and ψa(x). These are respectively given by

r̃l = rr , t̃l = tr , r̃r = rl , t̃r = tl , (132)

rl = − r∗
r

D∗ , tl = t∗l
D∗ , rr = − r∗

l

D∗ , tr = t∗r
D∗ , (133)

ral = e2iak rl , tal = tl rar = e−2iak rr , tar = tr , (134)

where we recall that D := M11/M22 = tltr − rlrr = det S.
Next, we examine the effect of Pa on the scattering data. Because in view of (106)

we have Pa = T2aP , Pa transforms the transfer matrix M according to

M
Pa−→ M̃ 2a = e−i2akσ 3σ 1M−1σ 1e

i2akσ 3 = 1

det M

[
M11 −e−4iakM21

−e4aikM12 M22

]
.

(135)

Here we have made use of (128) and the identity

e−iϕσ 3σ 1 = σ 1e
iϕσ 3 =

[
0 e−iϕ

eiϕ 0

]
.

Using (22) and (135), we obtain

rl
Pa−→ e4iakrr = e4iak̃rl , tl

Pa−→ tr = t̃r , (136)

rr
Pa−→ e−4iakrl = e−4iak̃rr , tr

Pa−→ tl = t̃r . (137)

These equations show that the effect of a space reflection about a point a �= 0
introduces the extra phase factors e±4iak in the expression for the P-transformed
reflection amplitudes. In particular, it does not affect the zeros and singularities of
the reflection and transmission amplitudes of the system.

We now study the implication of PT on the scattering data. According to (128),
the PT -transformation of the transfer matrix M(t) yields

M
PT−→ M̃ = σ 1[σ 1M∗σ 1]−1σ 1 = M−1∗

= 1

det M∗
[

M∗
22 −M∗

12
−M∗

21 M∗
11

]
. (138)
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In particular,

det M
PT−→ det M̃ = 1

det M∗ , (139)

M11
PT−→ M̃11 := M∗

22

det M∗ , M12
PT−→ M̃12 := − M∗

12

det M∗ , (140)

M21
PT−→ M̃21 := − M∗

21

det M∗ , M22
PT−→ M̃22 := M∗

11

det M∗ . (141)

With the help of these relations and (22) or alternatively (132) and (133),
we can derive the following expressions for the PT -transformed reflection and
transmission amplitudes.

r̃l = − r∗
l

D∗ , t̃l = t∗r
D∗ , r̃r = − r∗

r

D∗ , t̃r = t∗l
D∗ . (142)

8 P-, T -, and PT -Symmetric Scattering Systems

A physical system that involves the scattering of a scalar wave in one dimension is
said to be P-, T -, and PT -symmetric if its reflection and transmission amplitudes
are respectively invariant under space reflection, time-reversal, and the combined
action of space reflection and time-reversal transformation, i.e.,

P-symmetry := r̃l/r = rl/r and t̃l/r = tl/r , (143)

T -symmetry := rl/r = rl/r and tl/r = tl/r , (144)

PT -symmetry := r̃l/r = rl/r and t̃l/r = tl/r . (145)

We can alternatively state the definition of these symmetries in terms of the
invariance of the transfer matrix M or the scattering matrix S of the system under
the action of P , T , and PT . In this section we explore the consequences of these
symmetries.

According to (132), the P-symmetry of a scattering system implies

rl = rr , tl = tr . (146)

Substituting the latter equation in (21), we find det M = 1. Let us also mention
that in view of (49) and (146), the eigenvalues of the S-matrix for P-symmetric
systems take the simple form: s± = t ± r where t := tl = tr and r := rl = rr .

amostafazadeh@ku.edu.tr



Scattering Theory and PT -Symmetry 109

Another obvious consequence of (146) is that P-symmetric systems cannot support
unidirectional reflection or unidirectional invisibility.

The delta-function potential (86) provides a simple example of a P-symmetric
potential that may not be time-reversal-invariant. As demonstrated by (88), it
complies with (146).

We can similarly derive the consequences of Pa-symmetry. This symmetry also
implies transmission reciprocity and det M = 1, but breaks the reciprocity in
reflection amplitudes as it yields the following generalization of the first relation
in (146).

e−2iakrl (k) = e2aikrr (k). (147)

Notice however that reciprocity in reflection coefficients, |rl |2 = |rr |2, persists.
A simple example of Pa-symmetric scattering system is that of the barrier poten-
tial (56) with L = 2a. Clearly in this case the expressions (60) and (61) for the
reflection amplitudes agree with (147).

The consequences of the T -symmetry are more interesting. Imposing (144), we
can use (133) to deduce

r∗
r = −D∗rl , r∗

l = −D∗rr , t∗l/r = D∗tl/r . (148)

The first two of these relations indicate that either both rl/r vanish or |D| = 1. This
means that there is some real number σ ∈ R such that D = eiσ . Substituting this
in (148), we can show that

rr = −eiσ r∗
l , tl/r = εl/r |tl/r |eiσ/2, (149)

where εl/r are some unspecified signs; εl/r ∈ {−1, 1}. In particular,

|rl | = |rr |. (150)

This equation proves the following result.

Theorem 11 Time-reversal-invariant systems in one dimension cannot support
unidirectional reflection or unidirectional invisibility.

If we insert (149) in the definition of D, namely (75), and impose D = eiσ , we
find

|rl |2 + εlεr |tltr | = 1. (151)

The following theorem summarizes the content of Eqs. (150) and (151).

Theorem 12 The reflection and transmission amplitudes of a time-reversal-
invariant scattering system in one-dimension satisfy
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|rl (k)|2 = |rr (k)|2 = 1 ± |tl (k)tr (k)|, (152)

where k ∈ R
+ and the unspecified sign on the right-hand side is to be taken negative

whenever the system has reciprocal transmission, i.e., tl (k) = tr (k).

If tr = tl , which is for example the case for systems that are both T - and P-
symmetric or described by a real scattering potential, εl = εr and we can write (151)
as

|rl/r |2 + |t|2 = 1, (153)

where again t := tl = tr . Equation (153) is usually derived for real scattering
potentials using the unitarity of the time-evolution generated by the corresponding
standard Hamiltonian (114). It is therefore often called the unitarity relation. The
derivation we have offered here is more general, for it relies on the transmission
reciprocity and time-reversal-invariance. Removing the first of these conditions,
we arrive at (152) which is a mild generalization of the unitarity relation (153).
Equation (152) apply, for example, to the scattering problem defined by the time-
independent Schrödinger equation for the Hamiltonian operator:

H = (I + e−μx̂2
)

[
p̂2

2m
+ v(x̂)

]
,

where μ is a positive real parameter, and v(x) is a real and even scattering potential.
Note that this Hamiltonian is both P- and T -symmetric but not Hermitian.17

The unitarity relation (153), which holds for time-reversal-invariant systems
with reciprocal transmission, in general, and real scattering potentials in particular,
implies that the reflection and transmission coefficients of the system cannot exceed
1; |r(k)|2 ≤ 1 and |t(k)|2 ≤ 1 for all k ∈ R

+. This means that these systems do not
amplify the transmitted or reflected waves. In particular, we have:

Theorem 13 If a time-reversal-invariant scattering system in one dimension has
reciprocal transmission, it cannot have spectral singularities.

It is for this reason that spectral singularities do not appear in the study of unitary
quantum systems described by standard Hamiltonian operators.

Time-reversal-invariant systems violating reciprocity in transmission can have
spectral singularities. A simple example is a single-center point interaction (7) with
n = 1, c1 = 0, and

17The scattering problem for this Hamiltonian operator is equivalent to that of the energy-
dependent scattering potential v(x, k) := 2mv(x) + k2/(1 + eμx2

). This is because we can write
Hψ(x) = Eψ(x) in the form −ψ ′′(x) + v(x, k)ψ(x) = k2ψ(x) where k := √

E.
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B =
[

α β

γ −α

]
, α, β, γ ∈ R, βγ > 0. (154)

It is easy to see that the system described by this point interaction is time-reversal-
invariant, because B is a real matrix [41]. Furthermore, we can compute its transfer
matrix using (27) and find out that for this system M22(k) = βk2 − γ . Therefore,
it has a spectral singular k2

0 = γ /β. Note also that because det M = det B =
−α2 − βγ < 0, det M �= 1 which shows that it has nonreciprocal transmission.

We can also characterize time-reversal symmetry in terms of the restrictions it
imposes on the transfer and scattering matrices. These have the following simple
form.

M∗ = σ 1Mσ 1, S∗ = σ 1S−1σ 1. (155)

Because det σ 1 = −1, the first of these equations implies that det M must be real
while the second reproduces the result that det S is unimodular; | det S| = 1.

Let us examine the eigenvalues of S for time-reversal-invariant systems. In view
of (49), (149), and (151), these are given by

s+ = (τ +
√

τ 2 − 1)eiσ/2, s− = (τ −
√

τ 2 − 1)eiσ/2 = eiσ/2

τ + √
τ 2 − 1

, (156)

where

τ(k) := εl |tl (k)| + εr |tr (k)|
2

. (157)

It is not difficult to see that |s±| = 1 if and only if

|τ | ≤ 1. (158)

If |τ(k)| ≤ 1 for all k ∈ R
+, we say that the time-reversal symmetry of the system is

exact or unbroken. If |τ | > 1 for some k ∈ R
+, we say that the system has a broken

time-reversal symmetry.
To examine the physical meaning of exact time-reversal symmetry, we examine

the consequences of (158). First we use (157) to write it in the form

|tl |2 + |tr |2 + 2εlεr |tltr | ≤ 4. (159)

With the help of (151), we can express this equation as

|tl |2 + |tr |2
2

≤ 1 + |rl |2. (160)
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If εlεr = 1, (151), (150), and (160) imply

|rl/r |2 ≤ 1, |tl |2 + |tr |2 ≤ 4. (161)

Therefore similarly to the unitary systems the reflection and transmission amplitudes
are bounded functions, and the system cannot involve spectral singularities.

If a system has a broken time-reversal symmetry, there is some k ∈ R
+ such that

|τ(k)| > 1. In this case, (151) implies

|tl (k)|2 + |tr (k)|2
2

| > 1 + |rl |2 ≥ 1. (162)

Furthermore because
√

τ 2 − 1 is real and nonzero, (156) implies |s±| �= 1 and
s− = 1/s∗+.

Equation (151) which reveals various properties of the time-reversal-invariant
scattering systems has a rather interesting equivalent that does not involve the
unspecified signs εl/r . To derive this, first we use (74) and the fact that D(k) = eiσ(k)

to show that

rl/r (−k) = −e−iσ (k)rr/ l(k), tl/r (−k) = e−iσ (k)tl/r (k). (163)

These relations have the following straightforward implications:

|rl/r (−k)| = |rr/ l(k)|, |tl/r (−k)| = |tl/r (k)|, (164)

rl/r (−k)rl/r + tl/r (−k)tr/ l(k) = 1, (165)

where we have made use of the definition of D(k), i.e., (75), and the fact that D(k) =
eiσ(k).

It is important to notice that our derivation of Equations (163), (164), and (165)
only uses the fact that |D(k)| = 1, which is much less restrictive than the time-
reversal symmetry of the system. We state this result as a theorem:

Theorem 14 Equations (164) and (165) hold for any scattering system whose
reflection and transmission amplitudes satisfy |tl (k)tr (k) − rl (k)rr (k)| = 1, i.e.,
|D(k)| = 1.18

Next, we examine the implications of PT -symmetry. In view of (142) and (145),
the reflection and transmission amplitudes of PT -symmetric scattering systems
satisfy

r∗
l/r = −D∗rl/r , t∗l/r = D∗tl/r . (166)

18An extension of this theorem to more general scattering systems is given in [52].
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If we complex-conjugate both sides of (75) and use (166) in the right-hand side
of the resulting equation, we find D∗ = D∗2D, which means |D| = 1. In view
of Theorem 14, this shows that, similarly to time-reversal-invariant systems, PT -
symmetric systems satisfy the identities (164) and (165).19

Because |D| = 1, D = eiσ for some σ ∈ R. Using this relation in (166), we can
show that

rl/r = iηl/re
iσ/2|rl/r |, tl/r = εl/re

iσ/2|tl/r |, (167)

where ηl/r , εl/r ∈ {−1, 1}. Now, we substitute these relations in (75) and make use
of D = eiσ to conclude that

εlεr |tltr | + ηlηr |rlrr | = 1. (168)

According to this equation, εlεr = −1 implies ηlηr = 1 and ηlηr = −1 implies
εlεr = 1. These observations prove the following theorem.

Theorem 15 For all k ∈ R
+, the reflection and transmission amplitudes of a PT -

symmetric scattering system in one-dimension satisfy either

|tl (k)tr (k)| = −1 + |rl (k)rr (k)|, (169)

or

|tl (k)tr (k)| = 1 ± |rl (k)rr (k)|. (170)

If the system has reciprocal transmission, i.e., tl (k) = tr (k), only the second of
these relations holds. In this case, we have

|t(k)|2 ± |rl (k)rr (k)| = 1. (171)

If the system has reciprocal reflection, i.e., rl (k) = rr (k), (169) is not excluded but
the unspecified sign on the right-hand side of (170) is to be taken negative, i.e., it
reads

|tl (k)tr (k)| + |r(k)|2 = 1. (172)

19Equations (164) was originally conjectures in [1] for PT -symmetric scattering potentials based
on evidence provided by the study of a complexified Scarf II potential. It was subsequently proven
in [48] for general PT -symmetric scattering potentials which respect transmission reciprocity.
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For a scattering system defined by a PT -symmetric scattering potential, Theorem 2
ensures the reciprocity in transmission. Therefore, PT -symmetric scattering poten-
tials satisfy (171), [11].

Next, we examine the effect of PT -symmetry on the transfer and scattering
matrices. It is easy to show that for PT -symmetric systems,

M∗ = M−1, S† = σ 1S−1σ 1, (173)

where S† is the conjugate-transpose or Hermitian-conjugate of S. The first of these
relations follows from (138) and implies that det M is unimodular;

| det M| = 1. (174)

The second is a consequence of (48) and (166). Because σ−1
1 = σ 1, we can write

it in the form S† = σ 1S−1σ−1
1 . This indicates that S is a σ 1-pseudo-unitary matrix

[36], i.e., if we identify the elements of C2 with 2 × 1 matrices and view σ 1 and S
as linear operators acting on them, then S preserves the indefinite inner product:

〈a, b〉σ 1 := 〈a|σ 1b〉 = a†σ 1b = a∗
1b2 + a∗

2b1,

where a = [a1 a2]T and b = [b1 b2]T are arbitrary 2 × 1 complex matrices, and a
superscript “T” on a matrix labels its transpose.20 Because the S-matrix of every
PT -symmetric scattering potential is σ 1-pseudo-unitary, Eq. (171) is sometimes
called the pseudo-unitarity relation.

In general, an invertible square matrix U is said to be pseudo-unitary, if there
is an invertible Hermitian matrix η such that U† = ηU−1η−1. Pseudo-unitary
matrices have the property that the inverse of the complex-conjugate of their
eigenvalues are also eigenvalues, i.e., if s is an eigenvalue of a pseudo-unitary
matrix, either |s| = 1 or 1/s∗ is also an eigenvalue [36]. As we show above this
condition applies also for the eigenvalues of the S-matrix for time-reversal-invariant
systems. We can check its validity for the S-matrix of PT -symmetric systems by a
direct calculation of its eigenvalues. Inserting (167) in (49) and making use of (168),
we find that the expression for s± coincides with the one we obtain for the time-
reversal-invariant systems, namely (156). Therefore, again either |τ | ≤ 1 in which
case |s±| = 1, or |τ | > 1 in which case |s±| �= 1 and s− = 1/s∗+.

Following the terminology we employed in our discussion of time-reversal
symmetry, we use the sign of 1 − |τ | to introduce the notions of exact and broken
PT -symmetry. If for all k ∈ R

+, 1 − τ(k)| ≥ 0 so that |s±(k)| = 1, we say that
the system has an exact or unbroken PT -symmetry. If this is not the case we say
that its PT -symmetry is broken. This terminology should not be confused with the

20For a 2 × 2 matrix A, the condition of being σ 1-pseudo-unitary is equivalent to the requirement
that eiπσ 2/4Ae−iπσ 2/4 belong to the pseudo-unitary group U(1, 1), where σ 2 is the second Pauli
matrix.
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one employed in the study of PT -symmetric Hamiltonian operators H that have a
discrete spectrum. For these systems unbroken PT -symmetry means the existence
of a complete set of eigenvectors of H that are also eigenvectors of PT . This in turn
implies the reality of the spectrum of H , [2]. Scattering theory for a PT -symmetric
Hamiltonian is sensible only if its spectrum contains a real continuous part that
covers the positive real axis in the complex plane. In particular it may or may not
have nonreal eigenvalues.21

If for some k ∈ R
+, a PT -symmetric system has reciprocal transmission,

τ(k) = |t(k)|. Therefore the condition |τ | ≤ 1 puts an upper bound of 1 on
the transmission coefficient |t(k)|2. This in turn implies that the unspecified sign
in (171) must be taken positive and |rl (k)rr (k)| ≤ 1. As a result, the system
cannot amplify reflected or transmitted waves having wavenumber k. In particular
k2 cannot be a spectral singularity. In summary, for a system with reciprocal
transmission, such as those described by a scattering potential, exactness of PT -
symmetry forbids amplification of the reflected and transmitted waves and spectral
singularities.

An important advantage of PT -symmetry over P- and T -symmetries, is that it
does not imply the equality of the left and right reflection amplitudes. Therefore
unidirectional reflection and unidirectional invisibility are not forbidden by PT -
symmetry. In fact, it turns out that it is easier to achieve unidirectional reflection-
lessness and invisibility in the presence of PT -symmetry than in its absence. This
has to do with the following result that is a straightforward consequence of (142).

Theorem 16 The equations characterizing unidirectional invisibility, namely

rl/r (k) = 0 �= rr/ l, tl/r (k) = 1, (175)

are invariant under the PT -transformation.

For a PT -symmetric system the equations of unidirectional invisibility enjoy
the same symmetry as that of the underlying wave equation. This leads to enormous
practical simplifications in constructing specific unidirectionally invisible models.
It does not however imply that PT -symmetry is a necessary condition for unidirec-
tional reflection or invisibility [43].

9 Time-Reversed and Self-Dual Spectral Singularities

Consider a linear scattering system S with an invertible transfer matrix M(k). Then
spectral singularities of this system are determined by the real and positive zeros
of M22(k). According to (130), M11(k) = 0 if and only if M22(k) = 0. This in

21We use the term “eigenvalue” to mean an element of the point spectrum of H which has a square-
integrable eigenfunction.
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turn means that the real and positive zeros of M11(k) give the spectral singularities
of the time-reversed system S . We will refer to these as the time-reversed spectral
singularities of S .

At a time-reversed spectral singularity the Jost solutions of the time-reversed
system become linearly dependent and satisfy purely outgoing boundary conditions
at x = ±∞. This suggests the presence of solutions of the wave equation for
the system S that satisfy purely incoming asymptotic boundary conditions. To see
this, first we note that according to Eq. (14) whenever M11(k) = 0, we can have a
solution ψ(x) of the wave equation satisfying (1) with A+(k) = B−(k) = 0, i.e.,

ψ(x) → N±(k)e∓ikx for x → ±∞, (176)

where N±(k) are nonzero complex coefficients satisfying

N+(k) = M21(k)N−(k). (177)

In other words, ψ(x) satisfies the asymptotic boundary conditions (1) with

A−(k) = N−(k), B−(k) = 0, A+(k) = 0, B+(k) = N+(k).

If we substitute these in the first equation in (42) and recall that S1 = S, we find that

S(k)

[
N−(k)

N+(k)

]
=
[

0
0

]
.

This shows that [N−(k) N+(k)]T is an eigenvector of S(k) with eigenvalue zero. In
particular, one of the eigenvalues of S(k) vanishes.

The existence of a solution of the wave equation having the asymptotic expres-
sion (176) means that the scatterer will absorb any pair of incident left- and
right-going waves whose complex amplitude N±(k) are related by (177). This
phenomenon is called coherent perfect absorption [6, 27, 75]. In the study of
effectively one-dimensional optical systems, spectral singularities correspond to the
initiation of laser oscillations in a medium with gain, i.e., a laser, while their time-
reversal give rise to perfect absorption of finely tuned coherent incident beams by a
medium with loss. The latter is sometimes called an antilaser.

It may happen that a particular wavenumber k0 is a common zero of both M11(k)

and M22(k). In this case, we call k2
0 a self-dual spectral singularity [42]. At a self-

dual spectral singularity the wave equation admits both purely outgoing and purely
incoming solutions. This means that if the system is not subject to any incident
wave, it will amplify the background noise and begin emitting outgoing waves
of wavenumber k0. But if it is subject to a pair of left- and right-going incident
waves with wavenumber k0 and complex amplitudes satisfying (177) for k = k0,
then it will absorb them completely. In its optical realizations this corresponds to a
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special laser that becomes a coherent perfect absorber (CPA) once it is subject to an
appropriate pair of incoming waves. Such a device is called a CPA-laser.

For a time-reversal-invariant system we have M11(k) = M22(k)∗. Therefore
every spectral singularity is self-dual. But according to Theorem 13 spectral singu-
larities are forbidden for time-reversal-invariant systems with reciprocal transmis-
sion. This excludes real scattering potentials. There are however nonreal potentials
that admit self-dual spectral singularities. Principal examples are PT -symmetric
scattering potentials [7, 28, 77]. According to (140), for every PT -symmetric
scattering system,

M11(k) = det M(k)M22(k)∗.

This proves the following theorem.

Theorem 17 Spectral singularities of every PT -symmetric scattering system are
self-dual.

This does not however exclude the possibility of having non-PT -symmetric
systems with self-dual spectral singularities. Simple examples of the latter are
examined in [19, 22, 42].

10 Summary and Concluding Remarks

Scattering of waves can be studied using a general framework where the asymptotic
solutions of the relevant wave equation are plane waves. This point of view
is analogous to the general philosophy leading to the S-matrix formulation of
scattering in the late 1930s. In one dimension, the transfer matrix proves to
be a much more powerful tool than the S-matrix. We have therefore offered a
detailed discussion of the transfer matrix and used it to introduce and explore the
implications of P-, T -, and PT -symmetry. This is actually quite remarkable, for
we could derive a number of interesting and useful quantitative results regarding
the consequences of such symmetries without actually imposing them on the wave
equation. These results apply to scattering phenomena modeled using local as well
as nonlocal potentials and point interactions. The general setup we offer in Sect. 1
can also be used in the study of the scattering of a large class of nonlinear waves
that are asymptotically linear. The results we derived using the transfer matrix may
not however extend to such waves.

The recent surge of interest in the properties of PT -symmetric scattering poten-
tials has led to the study of remarkable effects such as unidirectional invisibility,
optical spectral singularities, and coherent perfect absorption. The global approach
to scattering that we have outlined here allows for a precise description of these
concepts for a general class of scattering systems that cannot be described using a
local scattering potential. In particular, we have derived specific conditions imposed
by P-, T -, and PT -symmetry on the presence of nonreciprocal transmission
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and reflection, spectral singularities and their time-reversal, and unidirectional
reflectionlessness and invisibility.

A recent development that we have not covered in the present text is the
construction of a transfer matrix for potential scattering in two and three dimensions
[31]. This has led to the discovery of a large class of exactly solvable multidimen-
sional scattering potentials [33], and allowed for the extension of the notions of
spectral singularity and unidirectional invisibility to higher dimensions [31, 32].
A particularly remarkable application of the multidimensional transfer matrix is
the construction of scattering potentials in two dimensions that display perfect
broadband invisibility below a tunable critical frequency [34].
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