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THE DIRAC 6-FUNCTION

The Dirac 6-function is a strange, but useful function which has many applications in
science, engineering, and mathematics. The §-function was proposed in 1930 by Paul
Dirac in the development of the mathematical formalism of quantum mechanics. He
required a function which was zero everywhere, except at a single point, where it was
discontinuous and behaved like an infinitely high, infinitely narrow spike of unit area.
Mathematicians were quick to point out that, strictly speaking, there is no function
which has these properties. But Dirac supposed there was, and proceeded to use it
so successfully that a new branch of mathematics was developed in order to justify
its use. This area of mathematics is called the theory of generalized functions and
develops, in complete detail, the foundation for the Dirac d-function. This rigorous
treatment is necessary to justify the use of these discontinuous functions, but for the
physicist the simpler physical interpretations are just as important. We will take both
approaches in this chapter.

5.1 EXAMPLES OF SINGULAR FUNCTIONS IN PHYSICS

Physical situations are usually described using equations and operations on contin-
uous functions. Sometimes, however, it is useful to consider discontinuous ideal-
izations, such as the mass density of a point mass, or the force of an infinitely fast
mechanical impulse. The functions that describe these ideas are obviously extremely
discontinuous, because they and all their derivatives must diverge. For this reason
they are often called singular functions. The Dirac é-function was developed to de-
scribe functions that involve these types of discontinuities and provide a method for
handling them in equations which normally involve only continuous functions.
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Figure 5.1 Force and Change in Momentum

5.1.1 The 1deal Impulse

Often a student’s first encounter with the &-function is the “ideal” impulse. In me-
chanics, an impulse is a force which acts on an object over a finite period of time.
Consider the realistic force depicted in Figure 5.1(a). It is zero until ¢ = ¢;, when it
increases smoothly from zero to its peak value, and then finally returns back to zero
at ¢t = t,. When this force is applied to an object of mass m,, the momentum in the
direction of the applied force changes, as shown in Figure 5.1(b). The momentum
remains constant until # = #;, when it begins to change continuously until reaching
its final value at ¢t = #,. The net momentum change A(m,v) is equal to the integrated
area of the force curve:

/ Ocdt F(t) = /zth(t)

2 dv
= / dt m,— = m,v
n

r = A(myv). (5.1)

3!

5]

An ideal impulse produces all of its momentum change instantaneously, at the
single point ¢t = f,, as shown in Figure 5.2(a). Of course this is not very realistic,
since it requires an infinite force to change the momentum of a finite mass in zero
time. But it is an acceptable thought experiment, because we might be considering
the limit in which a physical process occurs faster than any measurement can detect.

Momentum | Force

(o]

A(m,v) | . Area=A(m_v)

time time

(a) ' (b)

Figure 5.2 An Instantaneous Change in Momentum
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The force of an ideal impulse cannot be graphed as a function of time in the normal
sense. The force exists for only a single instant, and so is zero everywhere, except at
t = t,, when it is infinite. But this is not just any infinity. Since the total momentum
change must be A(m,v), the force must diverge so that its integral area obeys (for all
- <ty)

/t+ dt F(t) = {A('"f’”) - <l <1t (5.2)

0 otherwise

In other words, any integral which includes the point #, gives a momentum change
of A(m,v). On the other hand, integrals which exclude 7, must give no momentum
change. We graph this symbolically as shown in Figure 5.2(b). A spike of zero width
with an arrow indicates the function goes to infinity, while the area of the impulse is
usually indicated by a comment on the graph, as shown in the figure, or sometimes
by the height of the arrow.

The Dirac 8-function 8(¢) was designed to represent exactly this kind of “patho-
logical” function. 6(¢) is zero everywhere, except at 1 = 0, when it is infinite. Again,
this i1s not just any infinity. It diverges such that any integral area which includes
t = 0 has the value of 1. Thatis (for all 1~ < 1),

/+dt5(t)={(1) <0<ty (5.3)

otherwise

The symbolic plot is shown in Figure 5.3. The ideal impulse, discussed above, can
be expressed in terms of a shifted Dirac 8-function:

F(t) = A(m,v)d(t — t,). 5.4)

The ¢t — t, argument simply translates the spike of the 8-function so that it occurs at
t, instead of 0.

5.1.2 Point Masses and Point Charges

Physical equations often involve the mass per unit volume p,,(T) of a region of space.
Normally p,,(T) is a continuous function of position, but with 8-functions, it can also
represent point masses. A point mass has a finite amount of mass stuffed inside a

single point of space, so the density must be infinite at that point and zero everywhere
else.

L O(t)
ol
r 7 Area=1

t

Figure 5.3 The Dirac 8-function, 6(¢)
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Figure 5.4 A Single Point Mass at the Origin

Integrating the mass density over a volume V gives the total mass enclosed:
/ dt p,(t) = total mass inside V. (5.5)
v

Thus, if there is a single point of mass m, located at the origin, as shown in Figure 5.4,
any volume integral which includes the origin must give the total mass as m,. Integrals
which exclude the origin must give zero. In mathematical terms:

- mg origin included in V
/VdT pm(®) = { 0 origin excluded from V - (5.6)

Using Dirac 8-functions, this mass density function becomes
Pm(T) = m,8(x)8(y)0(2). (5.7

Equation 5.6 can easily be checked by expanding the integral as

/dT pm(T) = /dx/dy/dz m,8(x)d(y)8(z). (5.8)
v

Application of Equation 5.3 on the three independent integrals gives m, only when
V includes the origin. If, instead of the origin, the point mass is located at the point
(X0, Yo Zo)- shifted arguments are used in each of the §-functions:

Pm(E) = mod(x — X0)8(y — ¥0)0(z — ). (5.9)

Dirac 8-functions can also be used, in a similar way, to represent point charges in
electromagnetism.

5.2 TWO DEFINITIONS OF &(t)

There are two common ways to define the Dirac &-function. The more rigorous
approach, from the theory of generalized functions, defines it by its behavior inside
integral operations. In fact, the 8-function is actually never supposed to exist outside
an integral. In general, scientists and engineers are a bit more lax and use a second
definition. They often define the 6-function as the limit of an infinite sequence of
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 1/2n

Figure 5.5 The Square Sequence Function

~1/2n

continuous functions. Also, as demonstrated in the two examples of the previous
section, they frequently manipulate the 6-function outside of integrals. Usually, there
are no problems with this less rigorous approach. However, there are some cases,
such as the oscillatory sequence functions described at the end of this section, where
the more careful integral approach becomes essential.

5.2.1 (¢ as the Limit of a Sequence of Functions

The &-function can be viewed as the limit of a sequence of functions. In other words,
o6(t) = ,,lin}ﬁ"(t)’ (5.10)

where 8,(2) is finite for all values of ¢.
There are many function sequences that approach the Dirac 8-function in this way.
The simplest is the square function sequence defined by

_[n —-1/2n <t < +1/2n
On(t) = { 0 otherwise G.11)
and shown in Figure 5.5. Clearly, for any value of n
/ dt 8,(1) = 1, (5.12)

and in the limit as n — oo, 8,(r) = 0 for all ¢, except ¢+ = 0. The first three square
sequence functions for n = 1,2, and 3 are shown in Figure 5.6.

O,(t
s O )
‘ 1
7 7
e / ¢
-1/2 | -1/4 -1/6 1/6 1/4 1/2

Figure 5.6 The First Three Square Sequence Functions



TWO DEFINITIONS OF 8(1) 105

Figure 5.7 The Resonance Sequence Function

There are four other common function sequences that approach the Dirac §-
function. Three of them, the resonance, Gaussian, and sinc squared sequences, are
shown in Figures 5.7-5.9 and are mathematically described by

n/m
Resonance: 6,(t) = T30
. n —n2?
Gaussian:  6,(t) = Te (5.13)

T

, sin® nt

Sinc Squared:  8,(¢) = 5
nat

Each of these functions has unit area for any value of n, and it is easy to calculate
that in the limit as n — 0, 8,(t) = O forall ¢ # 0.

There is one other common sequence, the sinc function sequence, which ap-
proaches the d-function in a completely different manner. The discussion of this
requires more rigor, and is deferred until the end of this section.

| 8,(1)

n/(m)'? m
|
| 1/n

J\_

Figure 5.8 The Gaussian Sequence Function
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| 8a(1)

Figure 5.9 The Sinc Squared Sequence Function

5.2.2 Defining 6(¢) by Integral Operations

In mathematics, the &-function is defined by how it behaves inside an integral. Any
function which behaves as (¢) in the following equation is by definition a 6-function,

/+ dt 8(t — 1,)f(t) = {{;(’0) - <fp <ty (5.14)

otherwise

where t— < 4 and f() is any continuous, well-behaved function. This operation
is sometimes called a sifting integral because it selects the single value f(z,) out of
f@.

Because this is a definition, it need not be proven, but its consistency with our
previous definition and applications of the 8-function must be shown. Ift- <1, <1t,,
the range of the integral can be changed to be an infinitesimal region of size 2€ centered
around t,, without changing the value of the integral. This is true because 6(t — ¢,)
vanishes everywhere except at ¢ = t,. This means

I+ t,te

/ dt é(t — t,)f(t) = / dt 8(t — t,) f(2). (5.15)
I- o€

Because f(¢) is a continuous function, over the infinitesimal region it is effectively a

constant, with the value f(z,). Therefore,

t,te€

Ly
| ase-wpo=re [ ase—w=fa). 519
1_ o€
This “proves” the first part of Equation 5.14. The second part, when ¢, is not inside
the range t— < t < t,, easily follows because, in this case, 6(¢ — 1,)) is zero for the
entire range of the integrand. v
Figure 5.10 shows a representation of the integration in Equation 5.14. The inte-
grand is a product of a shifted 6-function and the continuous function f(¢). Because
the 6-function is zero everywhere except at ¢t = 1, the integrand goes to a 8-function
located at ¢ = 1,,, with an area scaled by the value of f(z,).
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f(t) )

\ 6(t-t,) with unit area

f(t) &(t-t,)

Figure 5.10 A Graphical Interpretation of the Sifting Integral

5.2.3 The Sinc Sequence Function

The sinc function can be used to form another set of sequence functions which, in the
limit as n — oo, approach the behavior of a §-function. The sinc function sequence
‘is shown in Figure 5.11 and is defined by

sin nt

Sinc:  8,(r) = (5.17)
Notice, however, that as n — oo this §,() does not approach zero for all ¢ # 0, so the
sinc sequence does not have the characteristic infinitely narrow, infinitely tall peak
that we have come to expect. How, then, can we claim this sequence approaches a
&-function?

The answer is that the sinc function approaches the &-function behavior from a
completely different route, which can only be understood in the context of the integral
definition of the 8-function. In the limitas n — oo, the sinc function oscillates infinitely
fast except at ¢ = 0. Thus, when the sequence is applied to a continuous function
f(#) in a sifting integral, the only contribution which is not canceled out by rapid
oscillations comes from the point ¢ = 0. The result is, as you will prove in one of the

T/n

Figure 5.11 The Sinc Sequence Function



108 THE DIRAC §-FUNCTION

exercises at the end of this chapter, the same as you would expect for any d-function:

/+dt [lim sinnt}f(t): {g(O) L<0<t, | (5.18)

n—x 1Tt otherwise

This means, in the limit n — oc, the sinc sequence approaches the é-function:

lim 22 _ s, (5.19)

n—x qrt

5.3 6-FUNCTIONS WITH COMPLICATED ARGUMENTS

So far, we have only considered the Dirac 6-function with either a single, independent
variable as an argument, e.g., 8(¢), or the shifted version 6(t —t,). In general, however,
the argument could be any function of the independent variable (or variables). It turns
out that such a function can always be rewritten as a sum of simpler &-functions.
Three specific examples of how this is accomplished are presented in this section,
and then the general case is explored. In each case, the process is the same. The
complicated 8-function is inserted into an integral, manipulated, and then rewritten
in terms of &-functions with simpler arguments.

53.1 o(—t)

To determine the properties of 6(—t), make it operate on any continuous function
f(t) inside a sifting integral,

/+m5«nﬂm (5.20)

where t_ < t, . The substitution t' = —¢ transforms this to

- / A S f(—t) = / Cdr () f(—1')

1- —1+

:{ﬂm —1 <0< —1

0 otherwise ’ (.21

where the last step follows from the integral definition of 6(¢) in Equation 5.14.
Therefore, we have

/wmﬁhﬂﬂ0:{£M) f- <0<t (5.22)

otherwise

But notice this is precisely the result obtained if a 8(¢) were applied to the same
function:
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/”msmﬂgz{gm) <0<ty (5.23)

otherwise

Remember, by definition, anything that behaves like a 8-function inside an integral
is a 6-function, so 8(—1) = &(¢). This implies the 8-function is an even function.

53.2 o(ar)

Now consider another simple variation 8(at), where a is any positive constant. Again,
start with a sifting integral in the form

/ ' dt f(t)o(at). (5.24)

With a variable change of ¢/ = at, this becomes

tla ! Ja)s(t) [ f(0)/a t-/a<0<ty/a
/,_/a dt’ a4 {0 otherwise ’ ©-23)
| so that
4 _ [ f©/a <0<t
/t_ dt f(t)d(ar) = {() otherwise ©:26)

Notice again, this is just the definition of the function 6(t) multiplied by the constant
1/a, so

d(ax) = 6(x)/a a>0. (5.27)

This derivation was made assuming a positive a. The same manipulations can be
performed with a negative a, and combined with the previous result, to obtain the
more general expression

8(ax) = 8(x)/lal. (5.28)
Notice that our first example, 6(¢) = &(—1), can be derived from Equation 5.28 by

settinga = —1.

533 62 —a?

As a bit more complicated argument for the Dirac 8-function, consider §(t*> — a?).
The argument of this function goes to zero whent = +a and t = —a, which seems
to imply two &-functions. To test this theory, place the function in the sifting integral

/+mfmmﬂ—a% - (5.29)
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There can be contributions to this integral only at the zeros of the argument of
the 6-function. Assuming that the integral range includes both these zeros, i.e.,
t_ < —aandty > +a, this integral becomes

—a+e +a+te
/ dr f(1)8(1? — a?) + / dt f(1)8(r* — d°), (5.30)

a—e€ +a—e

which is valid for any value of 0 < € < a.
Now 2 — a* = (t — a)(t + a), which near the two zeros can be approximated by

(t + a)(—2a) t — —a

(t — a)(+2a) t— +a’ (5.3D)

t2—a2=(t—a)(t+a)’~*{

Formally, these results are obtained by performing a Taylor series expansion of 1> — g2
about both t = —a and t+ = +a and keeping terms up to the first order. The Taylor
series expansion of t> — a® around an arbitrary point , is, to first order, given by

2 — g2
12— a* = tf —a*+ M (t — t,). (5.32)
dt
1=t,
In the limit as € — 0, Integral 5.30 then becomes
—a+te +a+te
/ dt f(1)8(—2a(t + a)) + / dt f(1H)8(2a(t — a)). (5.33)
—a—¢€ +a—e€

Using the result from the previous section, 8(ar) = 8(1)/lal, gives
dt f(1)6(t* —a’) = —f(—a) + — f(+a). (5.34)
. 2a 2a
Therefore, 8(t* — a®) is equivalent to the sum of two §-functions:

1 1
8112 — g% = 558(’ —a) + %5(1 + a), (5.35)

as shown in Figure 5.12.
O0(x2 — a?)

area=1/2a area=1/2a

—a a
Figure 5.12 The Plot of (x> — a?) (
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53.4 The General Case of 6(f (7))

Using the Taylor series approach, the previous example can be easily generalized to
an arbitrary argument inside a 6-function:

1
§(f() = Z lm’ 8(t — t;), (5.36)

where the sum over i is a sum over all the zeros of f(¢) and ¢; is the value of ¢t where
each zero occurs.

5.4 INTEGRALS AND DERIVATIVES OF &(¢)

Integrating the 8-function is straightforward because the 8-function is defined by its
behavior inside integrals. But, because the 8-function is extremely discontinuous,
you might think that it is impossible to talk about its derivatives. While it is true that
the derivatives cannot be treated like those of continuous functions, it is possible to
“talk about them inside integral operations or as limits of the derivatives of a sequence
of functions. These manipulations are sometimes referred to as §-function calculus.

5.4.1 The Heaviside Unit Step Function

Consider the function H(x), which results from integrating the &-function:

H(x)=/ dt 8(t). (5.37)

—oo

H(x) can be interpreted as the area under 6(¢) in the range from t = —o tot = x,
as shown in Figure 5.13. If x < 0, the range of integration does not include t = 0,
and H(x) = 0. As soon as x exceeds zero, the integration range includes t = 0, and
Hx) = 1:

[ {0 x<0
H(x) = /_m di 3(r) = { N (5.38)
fa 20

|
|
|
[

|

Figure 5.13 The Integration for the Heaviside Step Function
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H(x)

Figure 5.14 The Heaviside Function

Strictly, the value of H(0) is not well defined, but because 6(t) is an even function,
many people define H(0) = 1/2. A plot of the Heaviside function is shown in
Figure 5.14.

Ironically, the function does not get its name because it is heavy on one side but,
instead, from the British mathematician and physicist, Oliver Heaviside.

5.4.2 The Derivative of 6(f)

The derivatives of d(¢) are, themselves, very interesting functions with sifting prop-
erties of their own. To explore these functions, picture the first derivative of 8(¢) as
the limit of the derivatives of the Gaussian sequence functions:

PR _ iy D) _ iy 4 [ " ‘"2'2] . (5.39)

1 m — | —e
dt n—o  dt noedt | /o

Figure 5.15 depicts the limiting process.

The first derivative of 8(¢), often written 8'(z), is called a “doublet” because of
its opposing pair of spikes, which are infinitely high, infinitely narrow, and infinitely
close together. Like 6(#), the doublet is rigorously defined by how it operates on other
functions inside an integral. The sifting integral of the doublet is

/ ' dt f(1)8'(1), (5.40)
i

do,(t)/dt

oo

=

Figure 5.15 The Derivative of 8(r)
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where f(¢) is any continuous, well-behaved function. This integral can be evaluated
using integration by parts. Recall that integration by parts is performed by identifying
two functions, u(¢) and v(¢), and using them in the relation '

=b

b
— / d(v()u(t). (5.41)

=a a

/ d(u®)v(t) = u(t)v(l‘)

To evaluate Equation 5.40, let v(r) = f(t) and du = 8'(r)dr. Then dv = (df/dt) dt
and u(t) = 8(t) so that Equation 5.40 becomes

s , - t=ty d
[ swsto = s - [ a f“&) (5.42)

Ift— # 0and t;y # 0, Equation 5.42 reduces to |
/ at Fs'e) = — / f (’) AQF YA (5.43)

‘because 6(¢) is zero for t # 0. This is now in the form of the standard sifting integral,
SO

& _[-fO) <0<ty
/t ] dt f)8'(t) = { otherwise (5.44)
The doublet is the sifting function for the negative of the derivative.

This sifting property of the doublet, like the sifting property of 6(¢), has a graphical
interpretation. The integrated area under the doublet is zero, so if it is multiplied by a
constant, the resulting integral is also zero. However, if the doublet is multiplied by
a function that has different values to the right and left of center (i.e., a function with
a nonzero derivative at that point), then one side of the integrand will have more area
than the other. If the derivative of f(¢) is positive, the negative area of the doublet is
scaled more than the positive area and the result of the sifting integration is negative.
This situation is shown in Figure 5.16. If, on the other hand, the derivative of f(z)

TN ~ £(t) d8,(t)/dt

/
ﬂw”"gd/ﬂ : _‘/A

dé, (t)/dt

Figure 5.16 The Sifting Property of the Doublet
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is negative, the positive area of the doublet is enhanced more than the negative area,
and the sifting integration produces a positive result.

Similar arguments can be extended to higher derivatives of the 6-function. The
appropriate sifting property is arrived at by applying integration by parts a number
of times, until the integral is placed in the form of Equation 5.44.

5.5 SINGULAR DENSITY FUNCTIONS

One of the more common uses of the Dirac 8-function is to describe density functions
for singular distributions. Typically, a distribution function describes a continuous,
“per unit volume” quantity such as charge density, mass density, or number density.
Singular distributions are not continuous, but describe distributions that are confined
to sheets, lines, or points. The example of the density of a point mass was briefly
described earlier in this chapter.

5.5.1 Point Mass Distributions

The simplest singular mass distribution describes a point of mass m, located at the
origin of a Cartesian coordinate system, as shown in Figure 5.4. The mass density
function p,,(x, y, z) that describes this distribution must have the units of mass per
volume and must be zero everywhere, except at the origin. In addition, any volume
integral of the density which includes the origin must give a total mass of m,, while
integrals that exclude the origin must give zero mass. The expression

Pm(X,¥,2) = m,8(x)8(y)3(2) (5.45)

satisfies all of these requirements. Clearly it is zero unless x, y, and z are zero.
Therefore integrating p,, over a volume that does not include the origin produces
zero. Integrating over a volume that contains the origin results in

+€ +€ +e
/ dr moB(0)8(»)8(2) = / dx / dy / dz moB(x)8(»)8(2)
v —€ —€ —€
= m,. (5.46)

Because f dx 8(x) = 1, 8(x) has the inverse dimensions of its argument, or in this
case, 1/length. Therefore, m,8(x)8(y)8(z) has the proper dimensions of mass per
unit volume.

To shift the point mass to a different location than the origin, simply use shifted
o-functions:

Pm = m08(x - xo)a(y - yo)a(z = Zo)- (547)

This function has the proper dimensions of mass per unit volume, and p,, is zero
except at the point (x,, Yo, Z,). The Integral over a volume V correctly produces zero
mass if V does not include the point (x,, y,, z,) and m, if it does.
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Consider the very same point, but now try to write the mass density in cylindrical
coordinates, 1.e., pm(p, ¢, 2). In this system, the coordinates of the mass point are

(Pos Po» 20) Where
Po = 4/ x3 + y?

bo = tan” ' (yo/Xo) (5.48)

ZO = ZO'
A natural guess for p,,(p, ¢, z) might be
me6(p — po)d(P — ¢,)0(z — 2,). (5.49)

This density clearly goes to zero, unless p = p,, & = ¢, and z = z,, as it should.
However, because ¢ is dimensionless, Equation 5.49 has the dimensions of mass per
unit area, which is not correct. Also, the integral over a volume V becomes

/ d7 p = / dp / pdd / 2 me8(p — p)o(d — b —2).  (5.50)
|4

This is zero if V does not contain the point (p,, ¢,, z,), but when V does contain the
point, the result is m,p,, not m, as required. This is because the dp integration gives

pote
/ dp pd(p — po) = po. (5.51)
P,

p — €

Therefore, Equation 5.49 is not the proper expression for the mass density in cylin-
drical coordinates, because it does not have the proper dimensions, and integration
does not produce the total mass. From the discussion above, it is clear that the correct
density function is

Pm = %8@ ~ po)8( — bo)B(z — o). (5.52)

This example demonstrates an important point. While the point distributions in
a Cartesian system can be determined very intuitively, a little more care must be
used with non-Cartesian coordinates. In generalized curvilinear coordinates, where
dr = hyhyh3dq,dq,dqs, the expression for a point mass at (q,,, g2, g30) 1S

8(q1 — q10) 8(q2 — q20) 6(q3 — q3,)
hy h, hs |

Pm(qh q2, CIB) =m, (5.53)

There is a common shorthand notation used for three-dimensional singular distri-
butions. The three-dimensional Dirac §-function is defined by

_ 8(g1 — 910) (92 — g2,) 8(g2 — g20)

3= =
o°(r—r1,) m m h2

(5.54)
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In Cartesian coordinates, this is simply
(T —T,) = 8(x — x,)8(y — ¥0)8(z — 2,). (5.55)

Using this notation, the mass density of point mass located at T, is, regardless of the
coordinate system chosen, given by

Pm(F) = m,8(F — T,). (5.56)

If there are several points with mass m; at position t;, the density function becomes
a sum of &-functions:

pm(E) = ) m8(F — T, (5.57)

Integrating over a volume V gives

/ dr Yy m&(r — ), (5.58)
4 i
which, when evaluated, is simply the sum of all the masses enclosed in V.

5.5.2 Sheet Distributions

Imagine a two-dimensional planar sheet of uniform mass per unit area o,, located in
the z = z, plane of a Cartesian system, as shown in Figure 5.17. The intuitive guess
for the mass density p,, in Cartesian coordinates is

Pm(X, Y, Z) = (7'08(Z - Zo)- (559)

The 5-function makes sure all the mass is in the z = z, plane. The dimensions are
correct, because o, has the dimensions of mass per area, and the 8-function adds
another 1/length, to give p,, the dimensions of mass per unit volume. The real check,

Figure 5.17 Simple Infinite Planar Sheet
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however, is the volume integral. In order for Equation 5.59 to be correct, an integral
of the surface mass density over some part of the sheet S must give the same total
mass as a volume integral of p,,, over a volume V, which encloses S:

/do- on(T) = /d'r Pm(T). (5.60)
s 1%

For the case described above, Equation 5.60 expands on both sides to

/dx/dy o, = /dx/dy/dz 0,0(Z — 20), (5.61)

which is indeed true, because the range of the z integration includes the zero of
the &-function. Thus the assumption of Equation 5.59 was correct. Notice how the
&-function effectively converts the volume integral into a surface integral.
Unfortunately, things are not always this easy. The previous example was particu-
larly simple, because the sheet was lying in the plane given by z = z,. Now consider
the same sheet positioned in the plane y = x, as shown in Figure 5.18. In this case
the mass is only located where y = x, and the intuitive guess for the mass density is

O,6(y — X). (5.62)

But our intuition is incorrect in this case. The surface integral on the LHS of Equa-

tion 5.60 expands to
/dO" On(r) = /ds/dz g,, (5.63)

where ds is the differential length on the surface in the xy-plane, as shown in Fig-
ure 5.19. Notice that

ds = \/(dx)* + (dy)?
= \/2dx, (5.64)

G, Sheet

Figure 5.18 A Tilted Planar Mass Sheet
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Figure 5.19 The Differential Length ds Along the Surface x = y in the xy-Plane

where the last step follows because dx = dy for this problem. Thus Equation 5.63
becomes :

/ do on(F) = V2 / dx / dz o, (5.65)

If we use the expression in 5.62 for p,,, the volume integral on the RHS of Equa-

tion 5.60 1s
/dTp(F) = /dx/a’y/dz(roﬁ(y — X)
- / dx / dz o, (5.66)

where the last step results from performing the integration over y. Comparing Equa-
tions 5.66 and 5.65, we see that they are off by a factor of \/5 !

Where does this discrepancy come from? The problem was our assumption in
Equation 5.62 to use a 8-function in the form &6(y — x). We could have very well
chosen [?]6(y — x), where [?] is some function that we need to determine. This still
makes all the mass lie in the y = x plane. The correct choice of [?] is the one that
makes both sides of Equation 5.60 equal. For example, when we make our “guess”
for the distribution function for this example, we write

Pm(x,y,2) = [N0o,6(x — ). (3.67)

Then, when we evaluate the RHS of Equation 5.60, we get

/d’T p(F) = /dx/dy/dz o,[Mo(y — x)
= /dx/dz [No,. (5.68)

In this case, we already showed that the value of [?] is simply the constant \/5 In

more complicated problems, [?] can be a function of the coordinates. This can happen
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if either the mass per unit area of the sheet is not constant, or if the sheet is not flat.
You will see some examples of this in the next section and in the problems at the end
of this chapter.

5.5.3 Line Distributions

As a final example of singular density functions, consider the mass per unit volume
of a one-dimensional wire of uniform mass per unit length A,. The wire is bent to
follow the parabola y = Cx? in the z = 0 plane, as shown in Figure 5.20. The factor
C is a constant, which has units of 1/length. We will follow the same procedure in
constructing the mass density for this wire as we did for the previous example. In this
case, the volume integral of the mass density must collapse to a line integral along
the wire

/dT pm(T) = /ds Am(s). (5.69)
14 L ,

In this equation, s is a variable which indicates parametrically where we are on the
wire, and A,,(s) is the mass per unit length of the wire at the position s.
Because all the mass must lie on the wire, we write the mass density function as

pm(x,¥,2) = [7IA,8(y — Cx*)8(2). (5.70)

Here we have used two &-functions. The 6(z) term ensures all the mass liesinthez = 0
plane, while 8(y — Cx?) makes the mass lie along the parabola. As before, we include
an unknown factor of [?], which we will have to determine using Equation 5.69.

In terms of Cartesian coordinates, the general expression for the differential arc
length ds is

ds = \/(dx)? + (dy)? + (dz)>. (5.71)

Figure 5.20 Parabolic Line Distribution
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Along the wire,z = Oand y = Cx2, so that

ds = V1 +4C?x? dx. (5.72)
Using Equation 5.70 and the fact that d7 = dx dy dz, Equation 5.69 becomes
/ dx / dy / dz [NA.8(y — CxH)d(2) = / dx V1 +4C2x2 A, (5.73)

Let’s concentrate on the LHS of this equation. The integral over z is easy, because

/ dz 8(z) = 1. (5.74)

Also, when we do the integral over y, x is held constant, and only one value of y
makes the argument of the 8-function vanish, so we have

/ dy 8(y — Cx*) = 1. (5.75)

Therefore, Equation 5.73 becomes

/dx [7IA, = /dx 1 +4C%x2 A, (5.76)

and the value of [?] clearly must be

[7] = V1 + 4C2x2. (5.77)

Notice in this case that [?] is a function of position. The mass density for the wire is
given by

pm(x,y,2) = V1 + 4C2x2 A, 8(y — Cx*)8(2). (5.78)

When we converted the volume integral in Equation 5.73 to a line integral, it was
easier to perform the dy integration before the dx integration. This was because when
we integrated over y, holding x fixed, the only value of y which made the argument
of the &-function zero was y = Cx2. Another way to look at this is that there is a
one-to-one relationship between dx and ds, as shown in Figure 5.21.

If instead, we performed the x integration first, holding the value of y fixed, there
are two values of x which zero the 8-function argument. In this case, the integral
becomes

/de(y—Cx2)=%/de([x—\/y—/EHx+ y/CD
:\/—%T—y/dx[ﬁ(x—\/y—/f)+6(x+ y/c)]. (5.79)
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Figure 5.22 The Relation Between dy and ds Along the Parabola

Looking at Figure 5.22 shows what is going on here. There is not a one-to-one
relationship between dy and ds. Of course, evaluating the integral in this way produces
exactly the same result for p,,(T), as you will prove in one of the exercises of this
chapter.

5.6 THE INFINITESIMAL ELECTRIC DIPOLE

The example of the infinitesimal electric dipole is one of the more interesting appli-
cations of the Dirac 6-function and makes use of many of its properties.

5.6.1 Moments of a Charge Distribution

In electromagnetism, the distribution of charge density in space p.(F) can be ex-
panded, in what is generally called a multipole expansion, into a sum of its moments.
These moments are useful for approximating the potential fields associated with com-
plicated charge distributions in the far field limit (that is, far away from the charges).
Each moment is generated by calculating a different volume integral of the charge
distribution over all space. Because our goal is not to derive the mathematics of
multipole expansions, but rather to demonstrate the use of the Dirac §-functions, the
multipole expansion results are stated here without proof. Derivations can be found
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in most any intermediate or advanced book on electromagnetism, such as Jackson’s
Classical Electrodynamics.

The lowest term in the expansion is a scalar called the monopole moment. It is
just the total charge of the distribution and is determined by calculating the volume
integral of p:

0= dr p(F). (5.80)

All space

The next highest moment is a vector quantity called the dipole moment, which is
generated from the volume integral of the charge density times the position vector:

P= / dr Tp.(F). (5.81)
All space

The next moment, referred to as the quadrapole moment, is a tensor quantity generated
by the integral

<l

= / dr (3¢ F — [Fl°1 ) pe(®). (5.82)
All space

In this equation, the quantity T T is a dyad, and 1 is the identity tensor. There are an
infinite number of higher-order moments beyond these three, but they are used less
frequently, usually only in cases where the first three moments are zero.

Far away from the charges, the electric potential can be approximated by summing
the contributions from each of the moments. The potential field ® due to the first few
moments is

L (5.83)

1 |0 TP ¥
24 +
4me, | r r3 2r

d(r) =

It is quite useful to know what charge distributions generate just a single term in
this expansion, and what potentials and electric fields are associated with them. For
example, what charge distribution has just a dipole term (that is, P # 0) while all
other terms are zero (Q = 0, Q = 0, etc.). The Dirac §-function turns out to be quite
useful in describing these particular distributions.

5.6.2 The Electric Monopole

The distribution that generates just the Q/r term in Equation 5.83 is called the electric
monopole. As you may have suspected, it is simply the distribution of a point charge
at the origin:

Preno = 0O (F). (5.84)
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Its monopole moment,
Q= dr 4,8°(®) = q,, (5.85)
All space

is simply equal to the total charge. The dipole, quadrapole, and higher moments of
this distribution are all zero:

P= / dr g,F 8°(F) = 0 (5.86)
All space

Q= dr (37 F — r1)8°®) = 0. (5.87)
All space

The electric field of a monopole obeys Coulomb’s law:

1 qo&

E = i
4me, r?

(5.88)

5.6.3 The Electric Dipole

~ An electric dipole consists of two equal point charges, of opposite sign, separated by
some finite distance d,, as shown in Figure 5.23. The charge density of this system,
expressed using Dirac 8-functions, is

dOA — dOA
Pest = Go [53 (f — 3ex) - &3 (r + Eex)} , (5.89)

where in this case, the dipole is oriented along the x-axis.
You might be tempted to believe that this distribution has only a dipole moment.

Indeed both Q and Q are zero, while the dipole moment is given by

P= /dT qoF [53 (F - %ﬂéx) - & (P + %e)]

odo N odo A
= qz €x + q_2"ex (590)

= qod,&,.

The higher-order moments for the dipole distribution, however, do not vanish.

Figure 5.23 The Electric Dipole
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The “ideal™ dipole refers to a charge distribution that has only a dipole moment,
and no other. It is the limiting case of the “physical™ dipole. described above. In
this himit, the distance between the charges becomes vanishingly small, while the net
dipole moment P is held constant. In other words. d, — 0 and ¢, — = such that
doy, = p,is held constant. The charge distribution for this situation is

pr' o - dv' ~ a3 . du. \ _
Pt = llmﬂf o 2 A Sl O B [ (5.91)
d,—0 d, - =

Expansion of the o-tfunctions in terms of Cartesian coordinates gives

L./ d, S d, ‘
Poer = Po0(V)O(2) lllﬂ‘ (—{ [o <,\ - —2> -0 (.\ + 5)} : (5.92)

Notice that this limit 1s just the definition of a derivative:

| ' d, A d, c/5
: P — [ — e —
dl,,‘m) d, [8 (\-‘ 2 ) o (\.\ 2 )} d.\‘ . (5.93)

This means the charge distribution of an ideal dipole, with a dipole moment of
magnitude p,, oriented along the x axis, can be written

A
W

150
b = —py 25 50). (5.94)
dx

The electric field from the ideal dipole (and also from a physical dipole in the far
field limit) is the solution of

p(ry P dd(v)

vV E-

O(v)6(2) (5.95)
€, €, dx

But we already know the solution for the electric monopole is

— | ('ér 0
V-,{ ﬁj-} = 2 500)8(1)8(2). (5.96)

d1re, r-

()

Operating on both sides of Equation 5.96 with [—d,,d/dx], shows the electric tield in
Equation 5.95 obeys

- ] | nér
E:—m;{—mq-} (5.97)

axv Ldme, r-

Taking the derivative gives the result:

B Po 3x . 5 o8
= TR 8 g s.
e, r | r ( )
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This is the solution for a dipole oriented along the x-axis. In general, the dipole is a
vector P, which can be oriented in any direction, and Equation 5.98 generalizes to

E=

pr— {3(P- &, )8 —P}. (5.99)
Notice that the magnitude of this field drops off faster with r than the field of
the monopole. The higher the order of the moment, the faster its field decays with
distance.

5.6.4 Fields from Higher-Order Moments

The technique described above can be used to find the electric field and charge
distributions for the ideal electric quadrapole, as well as for all the higher moments.
The charge distributions can be constructed using 8-functions, and the fields can be
obtained by taking various derivatives of the monopole field. You can practice this
technique with the quadrapole moment in an exercise at the end of this chapter.

5.7 RIEMANN INTEGRATION AND THE DIRAC 6-FUNCTION

The &-function provides a useful, conceptual technique for viewing integration which
will become important when we discuss Green’s functions in a later chapter. From
Equation 5.14, the sifting integral definition of the é-function, any continuous func-
tion f(y) can be written

f = /_ dx 6(x — y)f(x). (5.100)

The Riemann definition of integration says that an integral can be viewed as the limit
of a discrete sum of rectangles,

+oo n=-+cw

/ dx g(x) = lim_ >~ gnAx)Ax, (5.101)

n=-w

where Ax is the width of the rectangular blocks which subdivide the area being
integrated, and » is an integer which indexes each rectangle. The limiting process
increases the number of rectangles, so for well-behaved functions, the approximation
becomes more and more accurate as Ax — 0. The Riemann definition is pictured
graphically in Figures 5.24(a) and (b).

Using the Riemann definition, Equation 5.100 becomes

+c0
fo0= [ dx g0 )

n=+wo

= Jlim_ > f(nAx)d(nAx — y)Ax. (5.102)

Ax—
n=-rr
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Figure 5.24 Discrete Sum Representation of an Integral
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Figure 5.25 The Construction of f(y) from an Infinite Sum of §-Functions

Equation 5.102 makes a very interesting statement: Any continuous function can be
viewed as the sum of an infinite number of é-functions. Both f(y) and the RHS of
Equation 5.102 are functions of y, and are plotted in Figure 5.25 for finite Ax. In
this figure, the 8-functions are located at y = nAx and have an area f(nAx)Ax.
The function f(y) is generated by this sum of 6-functions as Ax — 0, i.e., as the
spacing between the -functions and their areas go to zero. Thus an infinite number
of infinitesimal area 6-functions, spaced arbitrarily close together, combine to form
the continuous function f(y)!

EXERCISES FOR CHAPTER 5

1. Simplify the integral

o]

/ dx f(x)6(—ax + b),

where a and b are real, positive constants.
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2. Perform these integrations which involve the Dirac §-function:

0
i./ dx8(x — 1). ~))
-3

ii. /m dx (x* + 3)8(x — 5). = 4 8

5
iii. / dx x 8(x* — 5).

-5

5
iv. / dx x §(x* + 5).

=5

27
V. / dx 6(cos x).
0

37/4 V
vi. / dx x* 8(cos x).
/4

vii /mdxngé(—x—2
. R

10 dd(x — 5)
- viii. 2 4 et G
) e \‘.Vlll / dx (x* + 3) [ I ]
i y

-10

3. j)etermine the integral properties of the “triplet” d?8(t)/dt? by evaluating the
/integrals

. ® d?8(1)

i. /_0o dt ( PR A

T d’a(t — 1,)

11. [m dt f(t) <—d?2——““)(

4. The function h(x) is generated from the function g(x) by the intégral

h(x)=/ dx' g(x )M

If h(x) 1s the triangular pulse shown below, find and plot g(x).

h(x)
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Given that

_Jo x <0
f(x)_{ex__l x>0a

find and plot the first and second derivatives of f(x).

An ideal impulse moving in space and time can be described by the function,
fx, 1) = 1,06(x — vt),

where v, is a constant. Make a three-dimensional plot for f(x,¢) vs. x and ¢ to
show how this impulse propagates. What are the dimensions of v,? How does
the plot change if

flx, 1) = L,8(x — a,t*/2),

where a, is a constant? What are the dimensions of a,?

. Consider the sinc function sequence:

8,(t) = sin (nm)/(7x).

(a) On the same graph, plot three of these functions with n = 1, n = 10, and
n = 100.

(b) Prove that the limit of the sinc sequence functions acts like a §-function by
deriving the relation:

/+ » L}B}; sinnt] £y = {f(O) <0<ty ' (5.103)

rt 0 otherwise

As a first step, try making the substitution y = nt. You will need to use the

identity:
* sinx
/ dx—— = .
o X
The function 8(cos x) can be written as a sum of Dirac 8-functions

o(cosx) = Z a,6(x — x,).

Find the range for n and the values for the a, and the x,.

A single point charge g, is located at (1, 1,0) in a Cartesian coordinate system,
so that its charge density can be expressed as

pc(x,¥,2) = q, 8(x — 1) 8(y — 1) 8(2).
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10.

11.

(a) What is p.(p, 6, 2), its charge density in cylindrical coordinates? )
(b) What is p.(r, 6, @), its charge density in spherical coordinates? // '

An infinitely long, one-dimensional wire of mass per unit length A, is bent to
follow the curve y = A cosh (Bx), as shown below.

Find an expression for the mass per unit volume p(x, y, 7). Express your answer
two ways:

(a) As the product of two d-functions.

(b) As a sum of two terms, each the product of two 8-functions.

Be sure to check the dimensions of your answers.

An infinitely long, one-dimensional wire of mass per unit length A, is bent to
follow the line formed by the intersection of the surface x = y with the surface
y = z%, as shown in the figure below. Find an expression for p,,(x, y, ), the mass
per unit volume of the wire. '
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12. An infinitely long, one-dimensional wire with a constant mass per unit length A,
is bent to follow the curve y = sinx in the z = 0 plane.

Determine the mass density p,,(x, y, z) that describes this mass distribution.

13. A wire of mass per unit length A, is bent to follow the shape of a closed ellipse
that lies in the xy-plane and is given by the expression

x? +2y? = 4.

Express pn(x,y, ), the mass per unit volume of this object, using Dirac §-
functions. Show that your expression has the proper dimensions. There is more
than one way to express the answer to this problem. Identify the most compact
form.

14. An infinite, one-dimensional bar of mass per unit length A, lies along the line
y = m,x in the z = 0 plane.

o

(a) Determine the mass per unit volume p(x, y, z) of this bar.

(b) Now consider the situation where the bar is rotating about the z-axis at a
constant angular velocity w, so that the angle the bar makes with respect to
the x-axis is given by 6 = w,t, as shown below. Find an expression for the
time-dependent mass density p(x, y,z,t).
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15. A charge Q, is evenly distributed along the x-axis fromx = —L,/2tox = L, /2,

16.

17.

18.

as shown below.

(a) Using the Heaviside step function, what is the charge density p.(x, y, z),
expressed using Cartesian coordinates?

(b) What is this charge density in cylindrical coordinates?

Z

Using 6-functions and the Heaviside step function, express the charge density
p.(r) of a uniformly charged cylindrical shell of radius r, and length L,. The
total charge on the surface of the shell is Q,,.

An infinite, two-dimensional sheet with mass per unit area o, is bent to follow

the surface y = x°.

(a) Make a plot of the curve made by the intersection of this sheet and the plane
given by z = 0.

(b) Determine the mass per unit volume p,,(x, y, 2).
Express the mass density pn,(p, 6, z) of a conical surface that is formed by cutting
a pie-shaped piece from an infinite, uniform two-dimensional sheet of mass per

unit area o, and joining the cut edges. The conical surface that results lies on the
surface p = a, z where (p, 0, z) are the standard cylindrical coordinates.

G 1 Z
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19. An infinite, two-dimensional sheet with mass per unit area o, is bent to follow
the surface xy = 1 in a Cartesian coordinate system.

(a) Using the hyperbolic coordinates developed in Exercise 13 of Chapter 3,
express the mass density p,(u, v, z) for this sheet.

(b) Using the equations relating the coordinates, convert your answer to part (a)
above to Cartesian coordinates.

(¢) Now, working from scratch in a Cartesian system, obtain py,(x,y,z) by
requiring that this density function take the volume integral over all space to
a surface integral over the hyperbolic surface.

20. Express the mass density p,(T) for a spherical sheet of radius r,, with constant
mass per unit area o,.

21. A dipole electric field is generated outside the surface of a sphere, if the charge
per unit area on the surface of that sphere is distributed proportionally to cos(8).
If the sphere has a radius r, and there is a total charge of +(Q, on the upper
hemisphere and —Q, on the lower hemisphere, what is the expression for the
charge density p.(r, 8, ¢) in spherical coordinates?

z
s+t +4 /
+ 7
+ T~ /‘
+ N+
0 .
+ e +

22. In a two-dimensional Cartesian coordinate system, the mass density p,,(r) of a
pair of point masses is given by

Pm(X1,x2) = myd(x; + 1)8(x2) + my8(x; — 1)8(xy).

Evaluate the integrals:

i-/ / dxidx; pp(xy, x2).
il. / / dXIdXQFpm()Cl,XQ).
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i / / dxdxs [F - F) pn1, 12). |

iv./ / dxidx; [F Y] pm(x1, X2).

23. Prove that the monopole and quadrapole momeniis of any dipole (“physical” or
“ijdeal”) are zero.

24. A quadrapole charge distribution consists of four point charges in the x;x,-plane
as shown below. -

-4, @ I o+ q
| |
XI
—— — e .
-1 1
+q0. _IL .—qn

(a) Using Dirac 6-functions express the charge [density, pc(x1, X2, x3), of this
distribution.

(b) The quadrapole moment of this charge distribution is a second rank tensor
given by :
Q=0 &,

The elements of the quadrapole tensor are given by the general expression

Qij = / dxl / dXQ/ dX3 pc(xl,x2+x3) [3X,‘Xj - (xkxk)ﬁ,»j] .

where §;; is the Kronecker delta. In particulari

On = / dx; / dxz/ dxz p.(xy, X2, X3) [3x2x2 — (xf + x% + x%)] .

Evaluate all the elements of the quadrapole tensor for the charge distribution
shown in the figure above.
(c) Does this charge distribution have a dipole moment?

(d) Find the coordinate system in which this quadrapole tensor is diagonal.
Express the elements of Q in this system.

25. An ideal quadrapole has a charge density p.(x,y,y) that is zero everywhere
except at the origin. It has zero total charge, zero dipole moment, and a nonzero
quadrapole moment.
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(a) Show that if p.(x, y, z) has the form

do(x) da(y)
dx dy

pe(x,y,2) = {7] 8(2),

it satisfies the above requirements for an ideal quadrapole. Evaluate [?] so
that the elements of the quadrapole moment tensor for this distribution are
the same as the quadrapole elements in Exercise 24.

(b) Determine the electric field produced by this ideal quadrapole.



